DOI QR코드

DOI QR Code

Antiviral Effects of Titanium Dioxide Photocatalyst Treated Films against Highly Pathogenic Avian Influenza

고병원성 조류인플루엔자(H5N1)에 대한 이산화티타늄 광촉매 처리 필름의 항바이러스성 연구

  • Lee, Sang-Do (Department of Welfare & Management, Korea National University of Transportation) ;
  • Park, Hyun (Division of Biotechnology, Korea University)
  • 이상도 (한국교통대학교 복지.경영학과) ;
  • 박현 (고려대학교 생명공학부)
  • Received : 2021.01.28
  • Accepted : 2021.04.20
  • Published : 2021.04.28

Abstract

Damage to the highly pathogenic avian influenza virus(H5N1) continues to increase, but there is a lack of antiviral research. In this study, we analyze antiviral properties on H5N1 by coating Cu/TiO2 photocatalyst on polyethylene films. The specimen was manufactured a photocatalyst master batch and coated both sides of the 3-layer polyethylene fabric at 280℃ from the extrusion coating machine. The results showed a 99.9% decrease in the Staphylococcus aureus and Escherichia coli. In particular, H5N1 type highly pathogenic avian influenza viruses, which is capable of human infection, has been found to decrease 99.9% within five minutes of contact with Cu/TiO2 films. Antibacterial effects of films coated with photocatalyst are known, but this study also confirmed the antiviral effects.

고병원성 조류독감 바이러스(H5N1)에 대한 피해가 지속적으로 증가하고 있으나, 이에 대한 항바이러스성 연구는 부족한 상황이다. 본 연구에서는 폴리에틸렌 필름에 Cu/TiO2 광촉매를 코팅하여 H5N1에 대한 항바이러스 특성을 분석하였다. 시료는 광촉매 마스터배치를 제조하여 압출코팅기에서 280℃로 3중 레이어 폴리에틸렌 원단의 양면을 코팅하였다. 그 결과 황색포도상구균과 대장균의 균수가 99.9% 감소되는 것으로 나타났다. 특히 인체감염이 가능한 H5N1형 고병원성 조류인플루엔자는 Cu/TiO2계 필름에 접촉 5분 이내 99.9% 감소하는 것으로 확인되었다. 광촉매를 코팅한 필름의 항균성에 대해서는 알려져 있지만 본 연구를 통해 항바이러스성에 대해서도 확인이 가능하였다.

Keywords

References

  1. I. Y. Lim. (2010.12.08.). [Animal Diseases Attack the Korean Peninsual...The best way to deal this is] The resurgent 'Bird Flu Nightmare' News of Seoul. p 6. http://www.seoul.co.kr/news
  2. Wikipedia(2020.10.09.). H5N1. http://ko.wikipedia.org/wiki/H5N1
  3. J. K. Kim. (2018). Evaluation of Human Infectiousness of Avian Influenza Virus in Korea. Korean Society for Zoonoses Spring Conference, 15-29.
  4. M. G. Lim, B. J. Jung, E. Y. Lee, N. Y. Lee, H. G. Park, W. J. Nam & H. H. Schobert. (2003). "Emission Characteristics of VOCs and Formaldehyde Discharged from Car Sheet Cover Using Small Emission Chamber". Korea Journal of Odor Research and Eng, 7(3), 147.
  5. G. K. Boschloo, A. Goossens & J. Schoonman. (1997). Photoelectrochemical study of thin anatase TiO2 films propared by metalorganic chemical vapor deposition. Journal of Electrochemical Society, 144, 1311-1317. https://doi.org/10.1149/1.1837590
  6. M. J. Fedoruk & B. D. Kerger. (2003). Measurement of Volatile Organic Compounds inside Automobiles. Journal of Exposure Analysis & Environmental Epidemiology, 13(1), 31. https://doi.org/10.1038/sj.jea.7500250
  7. S. S. Lee. (2001). Preparation of Transition Metal Ion(Fe3+, W5+) Doped TiO2 and Acetaladehyde Decomposition. Yonsei University.
  8. J. K. Kim. (2004). Preparation and Characterization of Transition Metal-doped TiO2 Photocatalysts by Sol-Gel Process. Inha University.
  9. R. Qiu, D. Zang, Y. Mob, L. Song, E. Brewer, X. Huang & Y. Xiong. (2008). Photocatalytic Activity of Polymer-modified ZnO under Visible Light Irradiation. Journal of Hazardous Materials, 156(1), 80-85. https://doi.org/10.1016/j.jhazmat.2007.11.114
  10. Y. Guo, S. Chu, S. Yan, Y. Wang & Z. Zou. (2010). Developing a Ploymeric Semicounductor Photocatalyst with Visible Light Response. Chemical Communications, 46(39), 7325-7327. https://doi.org/10.1039/c0cc02355h
  11. K. Maeda, K. Sekizawa & O. Ishitani, (2013). A Polymeric-semiconductor-metal-complex Hybrid Photocatalyst for Visible-light CO2 Reduction. Chemical Communications, 49(86), 10127-10129. https://doi.org/10.1039/c3cc45532g
  12. J. Zhang, M. Grzelczak, Y. Hou, K. Maeda, K. Domen, X. Fu, M. Antonietti & X. Wang. (2012). Photocatalytic Oxidation of Water by Polymeric Carbon Nitride Nanohybrids made of Sustainable Elements. Chemical Science, 3, 443. https://doi.org/10.1039/c1sc00644d
  13. S. Y. Choi. (2014). A study on the Functional Properties of Polyester Fiber Treated Titanium Dioxide Photocatalyst. Elastomers and Composites, 49(4), 336-340. https://doi.org/10.7473/EC.2014.49.4.336
  14. S. Yuki & N. Masayuki. (2009). Fabrication of visible-light-active-photocatalysts with layer compound HTiTaO5. Preprints of Annual Meeting of The Ceramic Society of Japan Preprints of Fall Meeting of The Ceramic Society of Japan. 433
  15. LG Hausys, Ltd., (2017). "Visible Light-activated Photocatalytic Coating Composition and Air Purification Filter(WO2016137192)." United States : Patent Application Publication.
  16. GP&E., (2009). "Antibacterial, Antifungal and Antiviral Composition and Method for Preparing the Same(WO2010024598)." Seoul: KIPRIS.