DOI QR코드

DOI QR Code

Evaluation of Manufacturing and Biological Properties of Y Zone Care Hydrogel Solution

Y존 케어 하이드로젤솔루션의 제조 및 생물학적 특성 평가

  • Eun-Ji Kim (Department of Cosmetic Science, Hannam University) ;
  • In-Kyoung Kim (Department of Cosmetic Science, Hannam University)
  • 김은지 (한남대학교 코스메틱사이언스학과) ;
  • 김인경 (한남대학교 코스메틱사이언스학과)
  • Received : 2024.05.23
  • Accepted : 2024.06.21
  • Published : 2024.06.30

Abstract

In recent industrialization and development due to information and communication technology, modern women in modern society are exposed to physical and mental health due to numerous stresses. Popular inflammations are attributable to a decrease in lactic acid bacteria, frequent antibiotic use, and a decrease in immunity. It is necessary to develop products that are helpful and reflected. The inner care gel currently introduced on the market can increase beneficial bacteria and maintain a healthy y-zone. The inner gel contains a hydrogel component. 90% is made up of water, and other components act as support for supporting water and are formed through crosslinking between polymer chains. Hydroxyethyl cellulose (HEC) is a hydroxyethyl ethylenetel of cellulose. The purpose of use is to act as a binder, an emulsion stabilizer, a viscosity enhancer (water-soluble), and a film forming agent. CA (crosslinker) is a crosslinking agent and serves to bind. Hydrogel in the beauty field acts as a film forming agent that gently wraps around the skin by forming a thin film and serves as an emulsion stabilizer that helps to prevent separation of other raw materials. It also acts as a thickener by increasing viscosity in cosmetics. In addition, it is used for glucose monitoring, nursing care, cell transplantation, and wound treatment in the bio field. Currently, it is understood that no products using functional hydrogel have been released, so in this study, a Y zone care hydrogel solution was manufactured to find out the antibacterial properties of the functional hydrogel, and a new solution was developed. As a result, it was confirmed that the appropriate Ph was applied to the Y zone, and after culturing Candida albicans in PDB medium, all three products of the Y zone care hydrogel solution showed an antibacterial effect of 0.5-1.0mm

최근 정보통신 기술로 인해 산업화되고 발달됨에 있어, 현대사회의 현대 여성들은 수많은 스트레스로 육체적, 정신적 건강에 노출되어 있다. 대중적으로 발생하는 염증들은 유산균이 감소되거나 잦은 항생제 복용 및 면역력 저하의 원인이 대표적이다. 도움이 되며 반영되는 제품 개발이 필요하다. 현재 시중에 소개되고 있는 이너케어젤은 유익균을 증가시키고 건강한 y존을 유지할수 있다. 이너 젤 속에는 하이드로젤 성분이 함유되어있다. 90%가 물로 이루어져 있고 그 외에 성분은 물을 지지하는 지지체로서의 역할을 수행하며, 고분자 사슬간의 가교결합을 통해 형성된다. HEC(hydroxyethyl cellulose)는 셀룰로오스의 하이드록시에칠에 텔이다. 사용목적은 결합제, 유화안정제, 점도증가제(수성), 피막형성제 역할을 한다. CA (crosslinker)는 가교제이며, 결합시켜주는 역할을 한다. 미용분야의 하이드로젤은 얇은 피막형성으로 피부를 부드럽게 감싸주는 피막형성제 역할을 하고, 다른 원료들이 분리되지 않도록 도움을 주는 유화안정제 역할을 한다. 또한, 화장품에 점성을 높여 점도를 개선시키는 점증제 역할을 한다. 또한, 바이오 분야에서는 포도당 감시, 간호관리, 세포이식 및 상처 치료에도 사용되어지고 있다. 현재로서는 기능성 하이드로젤을 이용한 제품은 나오지 않은 것으로 파악되어 있어 본 연구에서는 기능성 하이드로젤 항균성을 알아보기 위해 Y존 케어 하이드로젤 솔루션 제조를 수행하였으며 새로운 솔루션 개발을 목적으로 한다. 결과적으로 Y존에 적절한 Ph를 맞추었음을 확인하였고, PDB배지에 칸디다 알비칸균 배양 후 Y존 케어 하이드로젤솔루션 세가지 제품 모두 0.5~1.0mm의 항균력 효과를 보았다.

Keywords

References

  1. J. Song et al. (2021). Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management. Npj Flexible Electronics, 5(1), 26. DOI : 10.1038/s41528-021-00122-y 
  2. Y. L. Lee et al. (2011). Microtechnologies and Functional Hydrogels for Tissue Engineering Applications, Polymer science and technology, 22(5), 454-459. 
  3. H. M. Jo. (2012). The effect of hydrogen peroxide-producing Lactobacillus johnsonii on bacterial vaginosis, Graduate School of Kyung Hee University. 9-10 
  4. M. S. Park. (2015). Cytological characteristics and infection patterns of microorganisms from cervico-vaginosis in women, Graduate School of Hanseo University. 1,5 
  5. H. H. Lee. (2017). Hydrogel based ionic devices and fast healing of ionically-crosslinked hydrogel by sonication, Graduate School of Seoul National University. 1 
  6. J. Jeon. (2016). Structure and characteristic of Nanocomposite Hydrogels Based on Montmorillonite, Graduate School of Hannam University. 3 
  7. E. M. Lee. (2010). Structure and characteristic of Nanocomposite Hydrogels Based on Montmo -rillonite, Graduate School of Hannam University. 18-20 
  8. H. Y. Lee. G. J. Kim. I. H. Shin. O. H. Kwon. (2020). Fabrication and Characterization of Sprayable Gelatin Hydrogels Wound Dressing by Enzymatic Crosslinking Reaction. Kumoh National Institute of Technology. 388-389
  9. S. G. Lee. (2016). Preparation of an Injectable Alginate Hydrogel by Enzymatic Crosslinking Reaction and Application to Wound Healing Agents. Graduate School of Technology, Kumoh National University of Technology. 9, 11, 14 DOI : 10.7317/pk.2023.47.4.469 
  10. E. M. Lee. (2010). Development of delivery system for cosmetic functional ingredients using pH-responsive P(MAA-co-EGMA) hydrogel micro -particles. Graduate School of Hongik University. 18-20 DOI : 10.3109/10717544.2010.500636 
  11. E. H. Jang et al. (2023). Preparation of Novel Natural Polymer-based Magnetic Hydrogels Reinforced with Hyperbranched Polyglycerol (HPG) Responsible for Enhanced Mechanical Properties. Journal of Clean technology, 29(1), 10-21. DOI : 10.7464/ksct.2023.29.1.10 
  12. Y. C. Song. D. S. Kim. J. H. Woo. K. S. Yoo & J. W. Chung. (2012). Modification of Anode Surface with Hydrogel and Multiwall Carbon Nanotube for High Performance of Microbial Fuel Cells. Environmental Engineering Research. 34(11), 757. DOI : 10.4491/KSEE.2012.34.11.757 
  13. D. W. Shin. M. R. Kim. M. J. Kang et al. (2023). Preparation and Physical Properties of a Silicone Hydrogel Contact Lens with a High-water-content Cellulose Surface Layer. Macromolecular Research. 47(5), 650-659. DOI : 10.7317/pk.2023.47.5.650 
  14. S. W. Lee. Y. J. Ko. H. Y. Chung & O. H. Kwon. (2023). Preparation of an Injectable Alginate Hydrogel by Enzymatic Crosslinking Reaction and Application to Wound Healing Agents. Macromolecular Research, 47(4) DOI: 10.7317/pk.2023.47.4.469 
  15. H. W. Jeong et al. (2021). Multi-responsive hydrogel cross-linked synthesized spiropyran-based hydrophilic cross-linker. The Korean Society of Applied Science and Technology, 38(1), 126-135. DOI : 10.12925/jkocs.2021.38.1.126 
  16. D. H. Kim & M. S. Kang. (2019). Fabrication and Characterizations of Interpenetrating Polymer Network Hydrogel Membrane Containing Hydrogel Beads. The Membrane Society of Korea. 29(4), 231-236. DOI: 10.14579/MEMBRANE_JOURNAL.2019.29.4.231 
  17. Y. R. Je. S. R. Bang & I. K. Kwon. (2021). Synthesis and Characteristic of Cross-linked Hyaluronic Acid Hydrogels with Putrescine under the Neutral pH Condition. Macromolecular Research. 45(4), 601-609. DOI : 10.7317/pk.2021.45.4.601 
  18. Y. H. Kim & K. D. Park. (2019). Synthesis and Characterization of Enzyme-Mediated Injectable Carrageenan Hydrogels. Department of Molecular Science and Technology. 43(2), 309-315. DOI : 10.7317/pk.2019.43.2.309 
  19. M. J. Lee, T. H. Kim & A. Y. Sung. (2016). Characterization and Application for Hydrogel Lens Material of Acrylate Monomers Containing Hydroxyl Group. Journal of the Korean Chemical Society. 60(3), 181-186. DOI : 10.5012/jkcs.2016.60.3.181 
  20. H. J. Byeon. W. S. Choi & H. Y. Lee. (2018). The physical properties of the cosmetic hydrogels affected by adding various celluloses. Journal of the Korean Applied Science and Technology, 35(3), 702-708. DOI : 10.12925/jkocs.2018.35.3.702