• Title/Summary/Keyword: Antigen-presenting cells

Search Result 146, Processing Time 0.029 seconds

Effect of Lipofectin on Antigen-presenting Function and Anti-tumor Activity of Dendritic Cells (수지상세포의 항원제시 능력 및 항암활성에 미치는 Lipofectin의 영향)

  • Noh, Young-Woock;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.102-110
    • /
    • 2006
  • Background: Dendritic cells (DC) are professional antigen-presenting cells in the immune system and can induce T cell response against virus infections, microbial pathogens, and tumors. Therefore, immunization using DC loaded with tumor-associated antigens (TAAs) is a powerful method of inducing anti-tumor immunity. For induction of effective anti-tumor immunity, antigens should be efficiently introduced into DC and presented on MHC class I molecules at high levels to activate antigen-specific $CD8^+$ T cells. We have been exploring methods for loading exogenous antigens into APC with high efficiency of Ag presentation. In this study, we tested the effect of the cationic liposome (Lipofectin) for transferring and loading exogenous model antigen (OVA protein) into BM-DC. Methods: Bone marrow-derived DC (EM-DC) were incubated with OVA-Lipofectin complexes and then co-cultured with B3Z cells. B3Z activation, which is expressed as the amount of ${\beta}$-galactosidase induced by TCR stimulation, was determined by an enzymatic assay using ${\beta}$-gal assay system. C57BL/6 mice were immunized with OVA-pulsed DC to monitor the in vivo vaccination effect. After vaccination, mice were inoculated with EG7-OVA tumor cells. Results: BM-DC pulsed with OVA-Lipofectin complexes showed more efficient presentation of OVA-peptide on MHC class I molecules than soluble OVA-pulsed DC. OVA-Lipofectin complexes-pulsed DC pretreated with an inhibitor of MHC class I-mediated antigen presentation, brefeldin A, showed reduced ability in presenting OVA peptide on their surface MHC class I molecules. Finally, immunization of OVA-Lipofectin complexes-pulsed DC protected mice against subsequent tumor challenge. Conclusion: Our data provide evidence that antigen-loading into DC using Lipofectin can promote MHC class I- restricted antigen presentation. Therefore, antigen-loading into DC using Lipofectin can be one of several useful tools for achieving efficient induction of antigen-specific immunity in DC-based immunotherapy.

Cordycepin Suppresses MHC-restricted Antigen Presentation and Leads to Down-regulation of Inflammatory Responses in Antigen Presenting Cells

  • Shin, Seulmee;Kim, Seulah;Hyun, Bobae;Lee, Aeri;Lee, Sungwon;Park, Chan-Su;Kong, Hyunseok;Song, Youngcheon;Lee, Chong-Kil;Kim, Kyungjae
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.347-354
    • /
    • 2013
  • Cordyceps militaris, a traditional medicinal mushroom, produces a component compound, cordycepin (3'-deoxyadenosine). Cordycepin has many pharmacological activities including immunological stimulating, anti-cancer, and anti-infection activities. However, the therapeutic mechanism has not yet been elucidated. In this study, we examined the effects of cordycepin on the antigen-presenting function of antigen-presenting cells (APCs). Dendritic cells (DCs) were cultured in the presence of cordycepin and then allowed to phagocytose microspheres containing ovalbumin (OVA). After washing and fixing, the efficacy of OVA peptide presentation by DCs was evaluated using CD8 and CD4 T cells. Also, we confirmed the protein levels of proinflammatory cytokines through RT-PCR and Western blot analysis. Cordycepin decreased both MHC class I and class II-restricted presentation of OVA and suppressed the expression of both MHC molecules and the phagocytic activity toward exogenous OVA. The class II-restricted OVA presentation-regulating activity of cordycepin was also confirmed using mice that had been injected with cordycepin followed by soluble OVA. Furthermore, cordycepin suppressed the mRNA and protein levels of iNOS, COX-2, pro-inflammatory cytokines in a concentration-dependent manner. These results provide an understanding of the mechanism of the T cell response-regulating activity of cordycepin through the inhibition of MHC-restricted antigen presentation in relation to its actions on APCs.

The Prospective of Antigen-presenting Cells in Cancer Immunotherapy (항원제시세포를 이용한 암 치료제 개발전망)

  • Shim Doo-Hee;Lee Jae-Hwa
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.415-420
    • /
    • 2004
  • All around the world, the rate of attack of cancer diseases has been going up and the number of cancer patients has been increasing every year. Cancer can be divided into malignant tumor and benign tumor according to its growth appearance. Many studies and experiments have been conducted and the various treatment are being created to find the way to care malignant. Dendritic cells (DCs), which is an agent of cancer treatments by using an immune reaction in our body, plays an important role to present by a tumor antigen to cytotoxic T-cell and help them to attack the tumor cell directly. However there are some defects of this therapy. Soluble human leukocyte antigen-immunoglobulin fusion protein (HLA-Ig) based artificial antigen presenting cell (aAPC) as the antigen presenting cell (APC) which is complement and overcome some of the limitations of dendritic cell-based vaccines and ex vivo expansion of human T cells is new method for cancer therapy. In this article, we are reviewing the role of DCs and the treatment with it, and searching for the possibility of the new development of immunotherapy for cancer.

Modulation of TNFSF expression in lymphoid tissue inducer cells by dendritic cells activated with Toll-like receptor ligands

  • Han, Sin-Suk;Koo, Ji-Hye;Bae, Jin-Gyu;Kim, Soo-Chan;Baik, Song;Kim, Mi-Yeon
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.129-134
    • /
    • 2011
  • Toll-like receptors (TLRs), which recognize structurally conserved components among pathogens, are mainly expressed by antigen-presenting cells such as dendritic cells (DCs), B cells, and macrophages. Recognition through TLRs triggers innate immune responses and influences antigen-specific adaptive immune responses. Although studies on the expression and functions of TLRs in antigen-presenting cells have been extensively reported, studies in lymphoid tissue inducer (LTi) cells have been limited. In this study, we observed that LTi cells expressed TLR2 and TLR4 mRNA as well as TLR2 protein and upregulated OX40L, CD30L, and TRANCE expression after stimulation with the TLR2 ligand zymosan or TLR4 ligand LPS. The expression of tumor necrosis factor superfamily (TNFSF) members was significantly upregulated when cells were cocultured with DCs, suggesting that upregulated TNFSF expression may contribute to antigen-specific adaptive immune responses.

Metformin Suppresses MHC-Restricted Antigen Presentation by Inhibiting Co-Stimulatory Factors and MHC Molecules in APCs

  • Shin, Seulmee;Hyun, Bobae;Lee, Aeri;Kong, Hyunseok;Han, Shinha;Lee, Chong-Kil;Ha, Nam-Joo;Kim, Kyungjae
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • Metformin is widely used for T2D therapy but its cellular mechanism of action is undefined. Recent studies on the mechanism of metformin in T2D have demonstrated involvement of the immune system. Current immunotherapies focus on the potential of immunomodulatory strategies for the treatment of T2D. In this study, we examined the effects of metformin on the antigen-presenting function of antigen-presenting cells (APCs). Metformin decreased both MHC class I and class II-restricted presentation of OVA and suppressed the expression of both MHC molecules and co-stimulatory factors such as CD54, CD80, and CD86 in DCs, but did not affect the phagocytic activity toward exogenous OVA. The class II-restricted OVA presentation-regulating activity of metformin was also confirmed using mice that had been injected with metformin followed by soluble OVA. These results provide an understanding of the mechanisms of the T cell response-regulating activity of metformin through the inhibition of MHC-restricted antigen presentation in relation to its actions on APCs.

Biphasic immunomodulatory effects of ionized biosilica water on the antigen-presenting capability of mouse dendritic cells (마우스 수지상세포의 항원 제시 능력에 대한 이온화 규소수의 biphasic 면역조절 효과)

  • Lee, You-Jeong;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.2
    • /
    • pp.14.1-14.7
    • /
    • 2021
  • Biosilica is a silica-based substance derived from the cell walls (frustules) of diatoms. Recently, research into biosilica's biological functions is underway, but little has been reported on the effects of biosilica on immune cells. In this study, we investigated the effect of ionized biosilica water (iBW) on dendritic cells (DCs), which play crucial roles as antigen (Ag)-presenting cells. Treatment with iBW increased the expression of immune response-related markers, closely connected to the maturation of DCs, and the production of tumor necrosis factor-alpha. In addition, iBW-treated DCs (iBW-DCs) had a lower uptake of fluorescein isothiocyanate-dextran than that of control DCs. Mixed leukocyte response analysis used for measuring the Ag-presenting capability of DCs, showed iBW-DCs had a higher capability than that of control DCs. Interestingly, DCs treated with lipopolysaccharide (LPS) and iBW had a lower level of Ag-presenting capability than that of LPS-treated DCs. Taken together, the results indicate that iBW alone can mature DCs, but it decreases the Ag-presenting capability of DCs in the presence of LPS, a representative agent of inflammation. This study may provide valuable information regarding the effect of iBW on immune cells. Further research is needed to investigate how iBW induces the observed biphasic immunomodulatory activity.

The effects of properties and interactions of surface molecules in antigen presenting cells on T cell activation (인공 항원제시세포의 표면 분자의 특성 및 상호작용이 T 세포 활성화에 미치는 영향)

  • Min, Youngsil;Kang, Yoon Joong
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.164-176
    • /
    • 2020
  • Efficient production of antigen specific cytotoxic T cells is critical for appropriate adoptive immune response. In vitro culture and expansion of human T lymphocyte clones are very sophisticated and subtle procedure in immune cell therapy and hard to control. Therefore, many groups devoted their efforts to manipulate artificial antigen presenting cells (aAPCs) that can induce T cell activation and clonal expansion. To mimicking of natural antigen-presenting cells, aAPCs encompass basic signal molecules required for T cell activation: MHC:antigen complexes, co-stimulatory molecules and soluble immune modulating molecules. Orchestrated organization of these molecules is important for efficient T cell activation. Here, we discuss how those molecules have been incorporated in several aAPC models, but also how physical properties od aAPC are important for interaction with T cells.

Bordetella bronchiseptica is a potent and safe adjuvant that enhances the antigen-presenting capability of dendritic cells

  • Lee, You-Jeong;Han, Yong;Joo, Hong-Gu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2020
  • We previously demonstrated that Bordetella bronchiseptica (B. bronchiseptica) antigen (Ag) enhances the Mycoplasma hyopneumoniae Ag-specific immune response. The focus of this study was whether acellular bacterin of B. bronchiseptica could be used as an adjuvant to increase antigen-presenting capability of dendritic cells (DCs) by increasing the level of activation. The metabolic activity of DCs was increased by B. bronchiseptica, similar to lipopolysaccharide (LPS). Flow cytometry analysis revealed that B. bronchiseptica increases the expression of major histocompatibility complex class-2, cluster of differentiation (CD)40, CD54, and CD86 which are closely related to DC-mediated immune responses. B. bronchiseptica enhanced the production of cytokines related to adaptive immune responses. Furthermore, the survival rate of B. bronchiseptica-injected groups was 100% at 15 and 20 mg/kg doses, whereas that of LPS-injected groups was only 20%, 0% at 15 and 20 mg/kg doses respectively, and so B. bronchiseptica is likely to be safer than LPS. Taken together, these results indicate that B. bronchiseptica can be used as an adjuvant to enhance the antigen-presenting capability of DCs. B. bronchiseptica is a candidate for producing vaccines, especially in case of DC-mediating efficacy and safety demands. This study provides researchers and clinicians with valuable information regarding the usage of B. bronchiseptica as a safe bacteria-derived immunostimulating agent for developing efficient vaccines.

HLA-restricted and Antigen-specific CD8+ T Cell Responses by K562 Cells Expressing HLA-A*0201

  • Yun, Sun-Ok;Sohn, Hyun-Jung;Yoon, Sung-Hee;Choi, Hee-Baeg;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.6 no.4
    • /
    • pp.179-184
    • /
    • 2006
  • Background: Identification of antigen-specific T cells has yielded valuable information on pathologic process and the disease state. Assays for quantification of inflammatory cytokines or lytic-granule molecules have been generally used to evaluate antigen specific T cell response, however their applicability have been hampered due to the limited source of autologous antigen-presenting target cells (APC). Methods: K562, a leukemic cell line deficient of human leukocyte antigen (HLA), was transfected with a gene encoding HLA-A*02 (K562/ A*02) and its function as stimulator cells in inducing activation of HLA-matched T cells was evaluated by IFN-${\gamma}$ enzyme linked immunospot (ELISPOT) assay. Results: The stable transfectant K562/ A*02 pulsed with HLA- A*02 restricted peptide could specifically induce IFN-${\gamma}$ secretion by CD8+ T cells compared to no detectable secretion by CD4+ T cells. However, CD56+ NK cells secreted IFN-${\gamma}$ in both K562/ A*02 with peptide and without peptide. The number of IFN-${\gamma}$ secreted CD8+ T cells was increased according to the ratio of T cells to K562 and peptide concentration. Formalin-fixed K562/ A*02 showed similar antigen presenting function to live K562/ A*02. Moreover, K562/ A*02 could present antigenicpeptide to not only A*0201 restricted CD8+ T cells but also CD8+ T cells from A*0206 donor. Conclusion: These results suggest that K562/ A*02 could be generally used as target having specificity and negligible background for measuring CD8+ T cell responses and selective use of K562 with responsder matched HLA molecules on its surface as APC may circumvent the limitation of providing HLA-matched autologous target cells.

The Cell Surface Expression of H2-M3 Does Not Directly Effect on the Killing Activity of NK Cell (H2-M3의 세포 표면 발현이 NK 세포의 활성에 미치는 영향 분석)

  • Lee, Sang-Yeol;Chun, Tae-Hoon
    • YAKHAK HOEJI
    • /
    • v.53 no.3
    • /
    • pp.125-129
    • /
    • 2009
  • H2-M3 (M3) is a unique antigen presenting molecule which provides N-formylated peptide to certain type of T cells. Previous observation indicated that NK cell activity is significantly diminished during listerial infection in $H2-M3^{-/-}$ mice. To explore the possibility that M3 expression directly effect on NK cell activity, we measured NK cell activity with or without stimulation of N-formylated peptide on antigen presenting cells. Results indicated that the expression of M3 is not directly influence on NK cell activity. Further study will be focused on the indirect effect of M3 on regulating NK cell activity.