• Title/Summary/Keyword: Antigen processing

Search Result 48, Processing Time 0.018 seconds

Evidence for Direct Inhibition of MHC-Restricted Antigen Processing by Dexamethasone

  • Im, Sun-A;Gerelchuluun, Turmunkh;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.328-332
    • /
    • 2014
  • Dexamethasone (Dex) was shown to inhibit the differentiation, maturation, and antigen-presenting function of dendritic cells (DC) when added during DC generation or maturation stages. Here, we examined the direct effects of Dex on MHC-restricted antigen processing. Macrophages were incubated with microencapsulated ovalbumin (OVA) in the presence of different concentrations of Dex for 2 h, and the efficacy of OVA peptide presentation was evaluated using OVA-specific CD8 and CD4 T cells. Dex inhibited both class I- and class II-restricted presentation of OVA to T cells; this inhibitory effect on antigen presentation was much more potent in immature macrophages than in mature macrophages. The presentation of the exogenously added OVA peptide SIINFEKL was not blocked by Dex. In addition, short-term treatment of macrophages with Dex had no discernible effects on the phagocytic activity, total expression levels of MHC molecules or co-stimulatory molecules. These results demonstrate that Dex inhibits intracellular processing events of phagocytosed antigens in macrophages.

Analysis of the Major Histocompatibility Complex Class I Antigen Presentation Machinery in Human Lung Cancer

  • Kim, Hyun-Pyo;Jin, Mi-Rim;Kim, Ick-Young;Ahn, Byung-Yoon;Kang, Seong-Man;Choi, Eui-Ju;Kim, Joon;Kim, Ik-Hwan;Ahn, Kwang-Seog
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.346-351
    • /
    • 1999
  • Tumor cells may alter the expression of proteins involved in antigen processing and presentation, allowing them to avoid recognition and elimination by cytotoxic T cells. In order to investigate whether the major histocompatibility complex (MHC) class I-mediated antigen processing machinery is preserved in human lung cancer cell lines, we examined the expression of multiple components of the MHC class I antigen processing pathway, including transporter associated with antigen processing (TAP), $\beta_2$-microglobulin, MHC class I molecules, and chaperones which have not been previously examined in this context. Row cytometry analysis showed that the cell surface expression of MHC class I molecules was downregulated in all of the cell lines. While some cell lines showed no detectable expression of MHC class I molecules, pulse-chase experiments showed that MHC class I molecules were synthesized in the other cell lines but not transported from the endoplasmic reticulum to the cell surface. Low or nondetectable levels of TAP1 and/or TAP2 expression were demonstrated by Western blot analysis in all of the cell lines, representing a variety of lung tissue types. In some cases, this was accompanied by loss of tapasin expression. Our findings suggest that downregulation of antigen processing may be one of the strategies used by tumors to escape immune surveillance. This study provides further information for designing the potential therapeutic applications such as immunotherapy and gene therapy against cancers.

  • PDF

Immunomodulatory Effects of Hypocrellin A on MHC-restricted Antigen Processing

  • Park, Sun-Im;Im, Sun-A;Kim, Ki-Hyang;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.412-415
    • /
    • 2011
  • Hypocrellin A has gained much attention in recent years due to its light-induced antitumor, antifungal and antiviral activities. Here we report that hypocrellin A exerts immunomodulatory effects on MHC-restricted presentation of antigen. Hypocrellin A inhibited class II-MHC restricted presentation of exogenous antigen, but not class I MHC-restricted presentation of exogenous antigen, in dendritic cells. Hypocrellin A also inhibited the cytosolic pathway of endogenous antigen presentation. However, hypocrellin A did not inhibit the expression of class I and class II MHC molecules on dendritic cells (DCs), the phagocytic activity of DCs, or the $H-2K^b$-restricted presentation of a synthetic peptide, SIINFEKL. These results show that hypocrellin A differentially modulates the MHC-restricted antigen presentation pathways.

Independent regulation of antigen processing and presentation on induction of antibody responses to various bacterial antigens in C3H/He mice

  • Kim, Hyung-Su;Jeong, Gajin
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.355-362
    • /
    • 1995
  • Induction of antibody production in C3H/He mice by bacterial infection is regulated through the processing exerted by antigen presenting cells. From the studies with Psudomonas aeruginosa, Salmonella typhimurium, and Micrococcus luteu, lipopolysaccharides (LPS) in Gram negative bacteria, which are known to be T-cell independent B cell mitogen, seem to be the major factor stimulating immune responses via activation of macrophages. Activation of macrophage, however, does not seem to correlate with antibody production. M. luteus was easily eliminatd by activated macrophages, while the processed antigens were immediately releasedd into culture medium before presentation. Nevertheless, antigens from Gram positive bacteria, Staphylococcus aureus and Bacillus subtilis, were very very active in chemotaxis and activation of periotoneal macrophages as well as in antien presnetation, while the very nature of the antigens is not yet clearly understood.

  • PDF

Genetic Characterization of the Escherichia coli O66 Antigen and Functional Identification of its wzy Gene

  • Cheng, Jiansong;Liu, Bin;Bastin David A.;Han, Weiqing;Wang, Lei;Feng Lu
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.69-74
    • /
    • 2007
  • Escherichia coli is a clonal species, and occurs as both commensal and pathogenic strains, which are normally classified on the basis of their O, H, and K antigens. The O-antigen (O-specific polysaccharide), which consists of a series of oligosaccharide (O-unit) repeats, contributes major antigenic variability to the cell surface. The O-antigen gene cluster of E. coli O66 was sequenced in this study. The genes putatively responsible for the biosynthesis of dTDP-6-deoxy-L-talose and GDP-mannose, as well as those responsible for the transfer of sugars and for O-unit processing were identified based on their homology. The function of the wzy gene was confirmed by the results of a mutation test. Genes specific for E. coli O66 were identified via PCR screening against representatives of 186 E. coli and Shigella O type strains. The comparison of intergenic sequences located between galF and the O-antigen gene cluster in a range of E. coli and Shigella showed that this region may perform an important function in the homologous recombination of the O-antigen gene clusters.

The Mucosal Immune System for the Development of New Generation Vaccine

  • Yuki, Yoshikazu;Kiyono, Hiroshi
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2003.06a
    • /
    • pp.55-62
    • /
    • 2003
  • The mucosal immune system provides a first line of defense against invasion of infectious agents via inhalation, ingestion and sexual contact. For the induction of protective immunity at these invasion sites, one must consider the use of the CMIS, which interconnects inductive tissues, including PP and NALT, and effector tissues of the intestinal, respiratory and genitourinary tracts. In order for the CMIS to induce maximal protective mucosal immunity, co-administration of mucosal adjuvant or use of mucosal antigen delivery vehicle has been shown to be essential. When vaccine antigen is administered via oral or nasal route, antigen-specific Th 1 and Th2 cells, cytotoxic T lymphocytes(CTLs) and IgA B cell responses are effectively induced by the CMIS. In the early stages of induction of mucosal immune response, the uptake of orally or nasally administered antigens is achieved through a unique set of antigen-sampling cells, M cells located in follicle-associated epithelium(FAE) of inductive sites. After successful uptake, the antigens are immediately processed and presented by the underlying DCs for the generation of antigen-specific T cells and IgA committed B cells. These antigen-specific lymphocytes are then home to the distant mucosal effector tissues for the induction of antigen-specific humoral(e.g., IgA) and cell-mediated (e.g., CTL and Th1) immune responses in order to form the first line of defense. Elucidation of the molecular/cellular characteristics of the immunological sequence of mucosal immune response beginning from the antigen sampling and processing/presentation by M cells and mucosal DCs followed by the effector phase with antigen-specific lymphocytes will greatly facilitate the design of a new generation of effective mucosal antigen-specific lymphocytes will greatly facilitate the design of a new generation of a new generation of effective mucosal adjuvants and of a vaccine deliver vehicle that maximizes the use of the CMIS.

  • PDF

Modulatory Effect of Kaempferitrin, a 3,7-Diglycosylflavone, on the LPS-Mediated Up-regulation of Surface Co-stimulatory Molecules and CD29-Mediated Cell-cell Adhesion in Monocytic- and Macrophage-like Cells (활성화된 단핵구 및 대식세포의 항원제시기능에 대한 Kaempferitrin의 조절 효과)

  • Kim, Byung-Hun;Cho, Dong-Ha;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.482-489
    • /
    • 2007
  • Kaempferitrin, isolated from Kenaf (Hibiscus cannabinus), was examined to evaluate its modulatory effects on antigen-presenting cell functions of macrophages/monocytes such as phagocytosis of foreign materials, up-regulation of costimulatory molecules (CD40, CD80 and CD86), adhesion molecule activation, and antigen processing and presentation. Kaempferitrin strongly blocked up-regulation of CD40, CD80 and CD86, but not pattern recognition receptor (PRR) (e.g., TLR2). It also suppressed functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay, required for T cell-antigen-presenting cell (APC) interaction. Furthermore, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. However, the compound did not diminish phagocytic uptake, an initial step for antigen processing, and ROS generation in RAW264.7 cells. In particular, to understand molecular mechanism of kaempferitrin-mediated inhibition, the regulatory role of LPS-induced signaling events was examined using immunoblotting analysis. Interestingly, this compound dose dependently suppressed the phosphorylation of $I{\kappa}B{\alpha}$, Src, Akt and Syk, demonstrating that it can negatively modulate the activation of these signaling enzymes. Therefore, our data suggested that kaempferitrin may be involved in regulating APC function-relevant immune responses of macrophages and monocytes by regulating intracellular signaling.

Lectins Isolated from Mushroom Fomitella fraxinea Enhance MHC-restricted Exogenous Antigen Presentation

  • Kim, Hyun-Jin;Cho, Kyung-Mi;Gerelchuluun, Turmunkh;Lee, Ji-Seon;Chung, Kyeong-Soo;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.7 no.4
    • /
    • pp.197-202
    • /
    • 2007
  • Background: Immunomodulators enhancing MHC-restricted antigen presentation would affect many cellular immune reactions mediated by T cells or T cell products. However, modulation of MHC-restricted antigen presentation has received little attention as a target for therapeutic immunoregulation. Here, we report that lectins isolated from mushroom Fomitella fraxinea enhance MHC-restricted exogenous antigen presentation in professional antigen presenting cells (APCs). Methods: Lectins, termed FFrL, were isolated from the carpophores of Fomitella fraxinea, and its effects on the class I and class II MHC-restricted presentation of exogenous ovalbumin (OVA) were examined in mouse dendritic cells (DCs) and mouse peritoneal macrophages. The effects of FFrL on the expression of total MHC molecules and the phagocytic activity were also examined in mouse DCs. Results: DCs cultured in the presence of FFrL overnight exhibited enhanced capacity in presenting exogenous OVA in association with class I and class II MHC molecules. FFrL increased slightly the total expression levels of both class I (H-$2K^b$) and class II (I-$A^b$) MHC molecules and the phagocytic activity of DCs. Antigen presentation-enhancing activity of FFrL was also observed in macrophages isolated from mouse peritoneum. Conclusion: Lectins isolated from the carpophores of Fomitella fraxinea increase MHC-restricted exogenous antigen presentation by enhancing intracellular processing events of phagocytosed antigens.

Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination

  • Sangho Lim;Ja-Hyun Koo;Je-Min Choi
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.