• Title/Summary/Keyword: Antifungal agents

Search Result 288, Processing Time 0.045 seconds

Paeonia lactiflora Inhibits Cell Wall Synthesis and Triggers Membrane Depolarization in Candida albicans

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.395-404
    • /
    • 2017
  • Fungal cell walls and cell membranes are the main targets of antifungals. In this study, we report on the antifungal activity of an ethanol extract from Paeonia lactiflora against Candida albicans, showing that the antifungal activity is associated with the synergistic actions of preventing cell wall synthesis, enabling membrane depolarization, and compromising permeability. First, it was shown that the ethanol extract from P. lactiflora was involved in damaging the integrity of cell walls in C. albicans. In isotonic media, cell bursts of C. albicans by the P. lactiflora ethanol extract could be restored, and the minimum inhibitory concentration (MIC) of the P. lactiflora ethanol extract against C. albicans cells increased 4-fold. In addition, synthesis of $(1,3)-{\beta}-{\small{D}}-glucan$ polymer was inhibited by 87% and 83% following treatment of C. albicans microsomes with the P. lactiflora ethanol extract at their $1{\times}MIC$ and $2{\times}MIC$, respectively. Second, the ethanol extract from P. lactiflora influenced the function of C. albicans cell membranes. C. albicans cells treated with the P. lactiflora ethanol extract formed red aggregates by staining with a membrane-impermeable dye, propidium iodide. Membrane depolarization manifested as increased fluorescence intensity by staining P. lactiflora-treated C. albicans cells with a membrane-potential marker, $DiBAC_4(3)$ ((bis-1,3-dibutylbarbituric acid) trimethine oxonol). Membrane permeability was assessed by crystal violet assay, and C. albicans cells treated with the P. lactiflora ethanol extract exhibited significant uptake of crystal violet in a concentration-dependent manner. The findings suggest that P. lactiflora ethanol extract is a viable and effective candidate for the development of new antifungal agents to treat Candida-associated diseases.

Suppression of melon powdery mildew and tomato leaf mold disease by the antifungal activity of tea tree (Melaleuca alternifolia) essential oil

  • Lee, Mun Haeng;Oh, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1071-1081
    • /
    • 2020
  • Essential oils (EOs) have been shown to be plant-extracted antimicrobial agents. However, there are limited studies investigating the efficacy of EOs against pathogens. Among them, tea tree oil (TTO) is extracted from Melaleuca alternifolia, which is also used as an antifungal agent. In this study, the effect of TTO was investigated on the suppression of melon powdery mildew caused by Podosphaera xanthii and tomato leaf mold disease caused by Passalora fulva. Both powdery mildew and leaf mold diseases were significantly suppressed by a spray of TTO. Eighty percent of powdery mildew and 81% of leaf mold disease of the control value were suppressed by 0.5% TTO liquid, when sprayed 3 times every 7 days on the melon and tomato leaves. Inhibition of mycelial growth was also greatly affected by different concentrations of TTO against four different fungal pathogens. Ninety-eight percent of Pseudocercospora fuligena, 97% of P. fulva, 95% of Botrytis cinerea, and 94% of Phytophthora infestans mycelial growth were inhibited by 0.2% to 1.0% of TTO contained in plate media, respectively. However, phytotoxicity in plants by the TTO treatments was revealed when melon and tomato leaves were sprayed with a 1% and 2% concentration of TTO, respectively. Therefore, our findings show that TTO has high antifungal effects against various plant pathogens that occur during crop cultivation. We also suggest that when applying TTO to plant leaves, it is necessary to establish an accurate treatment concentration for different crops.

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF

길항미생물 Pseudomonas sp. GRC3의 식물병원균에 대한 항균력

  • O, Ji-Hun;Park, Sin;Gang, Seon-Cheol
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.660-661
    • /
    • 2001
  • Pseudomonas sp. GRC3 produced extracellular chitinase(s) and ${\beta}$-1,3-glucanase(s), possible biocontrol agents. Both of enzymes appeared to inhibit the growth of plant phathogens, especially Phytophthora capsici. Antifungal activities of Pseudomonas sp. GRC3 determined was more than 78% inhibition rate against P. capsici.

  • PDF

Studies on the Antifungal Action of Cotton Fabrics in Korea (한국에 있어서의 섬유방미에 관한 연구)

  • 조재선;김종협;장건형
    • Korean Journal of Microbiology
    • /
    • v.4 no.2
    • /
    • pp.11-14
    • /
    • 1966
  • The deterioration of cellulosic materials due to the growth of mildew causes enormous loss to us. It is, therefore, necessary to give adequate protectional treatment against mildew spoilage on cellulosic materials. In this study, fourteen chemicals were treated to the strain of Chaetomium globosum A.T.C.C., then phenyl mercuric acetate (P.M.A) was proved to be a most effective fungicide out of various chemicals. Another chemicals, such as Na-pentachlorophenolate, tuget, $\alpha$-naphthol, caprylic acid and orthocidc were also proved to be effective mildew-proofing agents.

  • PDF

Development of Cotton Fabrics with Prolonged Antimicrobial Action

  • Kim, Young-Mi;Han, Suk-Kyu;Lee, Keyung-Jin;Kim, Youn-Taeg
    • Archives of Pharmacal Research
    • /
    • v.12 no.2
    • /
    • pp.119-124
    • /
    • 1989
  • Cotton xanthate, which was obtained by treating cotton with carbon disulfide in alkaline solution, was treated with the solution of polyvalent metal ions to produce cotton xanthate-metal chelates. This chelation reaction was readily and simply achieved, and antimicrobial agents with suitable structures could subsequently be coupled to the chelate with ease at moderate pH values and in aqueous solution. Metal ions used in present work include Cu(II), Zn(II) and Fe(III). Tetracycline, streptomycin, neomycin and pyrithion were used as antimicrobial/antifungal agents. Antibacterial activities were measured employing ditch plate method against G(+) Staphylococcus aureus, Streptococus faecalis, and G(-) Escherichia coli, Enterobacter aerogenes, and the fungus, Aspergillus niger. All the cotton xanthate-metal-antimicrobial agent chelates exhibited activities whereas the cotton xanthate-metal chelates themselves were inactive. Considering the extensive washing procedures and results from control experiments, possibility of the involvement of physical adsorption for the binding of drugs could be excluded.

  • PDF

Effect of culturing media on biocontrol ability and physiological state of Burkholderia gladioli strain B543.

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.87.2-87
    • /
    • 2003
  • Long-term repeated culturing of biocontrol agents on a certain medium often results in reduced biocontrol efficacy and altered physiology. Effect of culturing media on biocontrol ability and physiological state of Burkholderia gladioli strain B543 was investigated. Over 20 times repeated cultivation of B. giadioli strain B543 on Kings B medium or nutrient agar medium showed improved biological control of cucumber damping-off caused by Pythium ultimum, while one time cultivation on KB or NA did not. The repeated cultivation also induced the physiological changes of the biocontrol agent such as antifungal activity and the production of protease and siderophore. Our result indicates that adaptation to proper culturing medium can alter biocontrol ability and must consider in optimizing the use of biocontrol agents.

  • PDF

Seed Coating for the Application of Biocontrol Agent Bacillus subtilis YBL-7 against Phytopathogens (길항세균 Bacillus subtilis YBL-7 건조포자체의 종자피막화에 의한 생물학적 방제)

  • 장종원;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.243-248
    • /
    • 1995
  • Agrochemicals for the plant-disease control are criticized severely for causing environmental pollution and residual problems, and consequently microbial disease control agents are expected to be safer and more economical for sustainable agriculture. Treatment of biological control agents to seed requires the use of effective delivery systems that allow full expression of the benefical qualities of the bioprotectant. For the activation and establishment of bioprotectant around the plant seed which are able protect the seeds and seedlings from pathogen attack, the optimal liquid coating formulation was obtained using 2% sodium carboxymethyl cellulose (binder), 20% sesame dregs (solid particulate material), and dried spore of Bacillus subtilis YBL-7 (bioprotectants, 10 mg/g of seed). Suppressive of root rot was demonstrated in pot trials with coated kidney bean (Phaseolus vulgaris L.) seeds. Coated seeds with B. subtilis YBL-7 spore in F. solani-infested soil reduced disease incidence by 85% to 90% after 30 days.

  • PDF

Synthesis of Certain Substituted Quinoxalines as Antimicrobial Agents (Part II)

  • Mohga.M.Badran;Khaled.A.M.Abouzid;M. H. M. Hussein
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.107-113
    • /
    • 2003
  • Several fused triazolo and ditriazoloquinoxaline derivatives such as 1-aryl-4-chloro-[1,2,4]triazolo[4,3-a]quinoxalines (3a-d), 4-alkoxy[1,2,4]triazolo[4,3-a]quinoxalines (4a,b), 4-substituted-amino-[1,2,4] triazolo[4,3-a]quinoxalines (5a-h), 1-(aryl)-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-thione (6), 4-(arylidenehydrazino )-1-phenyl-[1,2,4]triazolo[4,3-a]quinoxalines (10a-e) and [1,2,4]ditriazolo[4,3-a:3',4'-c]quinoxaline derivatives (11-13) have been synthesized and some of these derivatives were evaluated for antimicrobial and antifungal activity in vitro. It was found that compounds 3a and 9b possess potent antibacterial activity compared to the standard tetracycline.