• Title/Summary/Keyword: Antibody engineering

Search Result 354, Processing Time 0.038 seconds

Induction of Sesquiterpene Cyclase During Integrated Extraction of Sesquiterpenes from Hairy Root Cultures of Hyoscyamus muticus (Hyoscyamus muticus의 모상근배양으로부터 Sesquiterpene 화합물의 Intergration 추출시 Sesquiterpene Cyclase의 유도)

  • BACK, Kyoungwhan;SHIN, Dong Hyun;KIM, Kil Ung;De HAAS, Cynthia R.;CHAPPELL, Joseph;CURTIS Wayne R.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.5
    • /
    • pp.273-277
    • /
    • 1997
  • The sesquiterpene cyclase (SC) was induced and its products were accumulated in the culture media of Hyoscyamus muticus hairy roots by addition of Rhizoctonia solani extracts. The cumulative production of solavetivone was nearly doubled by integrated extraction of the products from the media during the 24 h accumulation period. Western blots with monoclonal antibodies against SC show that the enzyme levels are the same for both extracted and non-extracted cultures. SC activities measured in vitro with radioactive substrate are not significantly different. These results suggest that productivity is controlled by substrate availability within the terpenoid pathway, and feedback regulation precedes the branch-point enzyme sesquiterpene cyclase.

  • PDF

Biochemical Characterization of 20α-Hydroxysteroid Dehydrogenase

  • Byambaragchaa, Munkhzaya;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.42 no.2
    • /
    • pp.7-12
    • /
    • 2018
  • In this review, we have tried to summarize the evidence and molecular characterization indicating that $20{\alpha}$-hydroxysteroid dehydrogenase ($20{\alpha}$-HSD) is a group of the aldo-keto reductase (AKR) family, and it plays roles in the modulation and regulation of steroid hormones. This enzyme plays a critical role in the regulation of luteal function in female mammals. We have studied the molecular expression and regulation of $20{\alpha}$-HSD in cows, pigs, deer, and monkeys. The specific antibody against bovine $20{\alpha}$-HSD was generated in a rabbit immunized with the purified recombinant protein. The mRNA expression levels increased gradually throughout the estrous cycle, the highest being in the corpus luteum (CL) 1 stage. The mRNA was also specifically detected in the placental and ovarian tissues during pregnancy. The $20{\alpha}$-HSD protein was intensively localized in the large luteal cells and placental cytotrophoblast villus, glandular epithelial cells of the endometrium, syncytiotrophoblast of the placenta, the isthmus cells of the oviduct, and the basal part of the primary chorionic villi and chorionic stem villus of the placenta and large luteal cells of the CL in many mammalian species. Further studies are needed to determine the functional significance of the $20{\alpha}$-HSD molecule during ovulation, pregnancy, and parturition. This article will review how fundamental information of these enzymes can be exploited for a better understanding of the reproductive organs during ovulation and pregnancy.

Therapeutic Strategy for the Prevention of Pseudorabies Virus Infection in C57BL/6 Mice by 3D8 scFv with Intrinsic Nuclease Activity

  • Lee, Gunsup;Cho, SeungChan;Hoang, Phuong Mai;Kim, Dongjun;Lee, Yongjun;Kil, Eui-Joon;Byun, Sung-June;Lee, Taek-Kyun;Kim, Dae-Hyun;Kim, Sunghan;Lee, Sukchan
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.773-780
    • /
    • 2015
  • 3D8 single chain variable fragment (scFv) is a recombinant monoclonal antibody with nuclease activity that was originally isolated from autoimmune-prone MRL mice. In a previous study, we analyzed the nuclease activity of 3D8 scFv and determined that a HeLa cell line expressing 3D8 scFv conferred resistance to herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV). In this study, we demonstrate that 3D8 scFv could be delivered to target tissues and cells where it exerted a therapeutic effect against PRV. PRV was inoculated via intramuscular injection, and 3D8 scFv was injected intraperitoneally. The observed therapeutic effect of 3D8 scFv against PRV was also supported by results from quantitative reverse transcription polymerase chain reaction, southern hybridization, and immunohistochemical assays. Intraperitoneal injection of 5 and $10{\mu}g$ 3D8 scFv resulted in no detectable toxicity. The survival rate in C57BL/6 mice was 9% after intramuscular injection of 10 $LD_{50}$ PRV. In contrast, the 3D8 scFv-injected C57BL/6 mice showed survival rates of 57% ($5{\mu}g$) and 47% ($10{\mu}g$). The results indicate that 3D8 scFv could be utilized as an effective antiviral agent in several animal models.

3D Printing-Based Ultrafast Mixing and Injecting Systems for Time-Resolved Serial Femtosecond Crystallography (시간 분해 직렬 펨토초 결정학을 위한 3차원 프린팅 기반의 초고속 믹싱 및 인젝팅 시스템)

  • Ji, Inseo;Kang, Jeon-Woong;Kim, Taeyung;Kang, Min Seo;Kwon, Sun Beom;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.300-307
    • /
    • 2022
  • Time-resolved serial femtosecond crystallography (TR-SFX) is a powerful technique for determining temporal variations in the structural properties of biomacromolecules on ultra-short time scales without causing structure damage by employing femtosecond X-ray laser pulses generated by an X-ray free electron laser (XFEL). The mixing rate of reactants and biomolecule samples, as well as the hit rate between crystal samples and x-ray pulses, are critical factors determining TR-SFX performance, such as accurate image acquisition and efficient sample consumption. We here develop two distinct sample delivery systems that enable ultra-fast mixing and on-demand droplet injecting via pneumatic application with a square pulse signal. The first strategy relies on inertial mixing, which is caused by the high-speed collision and subsequent coalescence of droplets ejected through a double nozzle, while the second relies on on-demand pneumatic jetting embedded with a 3D-printed micromixer. First, the colliding behaviors of the droplets ejected through the double nozzle, as well as the inertial mixing within the coalesced droplets, are investigated experimentally and numerically. The mixing performance of the pneumatic jetting system with an integrated micromixer is then evaluated by using similar approaches. The sample delivery system devised in this work is very valuable for three-dimensional biomolecular structure analysis, which is critical for elucidating the mechanisms by which certain proteins cause disease, as well as searching for antibody drugs and new drug candidates.

Isolation of Probiotic Piliated Lactobacillus rhamnosus Strains from Human Fecal Microbiota Using SpaA Antiserum-Based Colony Immunoblotting

  • Yang, Zhen-quan;Xue, Yu;Rao, Sheng-qi;Zhang, Mi;Gao, Lu;Yin, Yong-qi;Chen, Da-wei;Zhou, Xiao-hui;Jiao, Xin-an
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1971-1982
    • /
    • 2017
  • Piliated Lactobacillus rhamnosus (pLR) strains possess higher adherent capacity than non-piliated strains. The objective of this study was to isolate and characterize probiotic pLR strains in human fecal samples. To this end, mouse polyclonal antiserum (anti-SpaA) against the recombinant pilus protein (SpaA) of L. rhamnosus strain GG (LGG) was prepared and tested for its reactivity and specificity. With the anti-SpaA, a method combining the de Man, Rogosa, and Sharpe (MRS) agar plating separation and colony immunoblotting (CIB) was developed to isolate pLR from 124 human fecal samples. The genetic and phenotypic characteristics of the resultant pLR isolates were compared by randomly amplified polymorphic DNA (RAPD) fingerprinting, and examination of adhesion to Caco-2 cells, hydrophobicity, autoaggregation, and in vitro gastrointestinal tolerance. Anti-SpaA specifically reacted with three pLR strains of 25 test strains, as assessed by western blotting, immunofluorescence flow cytometry, and immunoelectron microscopy (IEM) assays. The optimized MRS agar separation plus anti-SpaA-based CIB procedure could quantitatively detect $2.5{\times}10^3CFU/ml$ of pLR colonies spiked in $10^6CFU/ml$ of background bacteria. Eight pLR strains were identified in 124 human fecal samples, and were confirmed by 16S RNA gene sequencing and IEM identification. RAPD fingerprinting of the pLR strains revealed seven different patterns, of which only two isolates from infants showed the same RAPD profiles with LGG. Strain PLR06 was obtained with high adhesion and autoaggregation activities, hydrophobicity, and gastrointestinal tolerance. Anti-SpaA-based CIB is a rapid and inexpensive method for the preliminary screening of novel adherent L. rhamnosus strains for commercial purposes.

Chitosan Derivatives for Target of Specific Tissue in the Body (생체 내 특정 조직의 표적을 위한 키토산 유도체)

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.593-602
    • /
    • 2010
  • Chitosan as a natural polymer has superior physicochemical properties such as biocompatibility, biodegradability and nontoxicity, but application of chitosan for therapy of cancer and gene related-disease has been limited by poor solubility in aqueous solution. Therefore, low molecular weight water-soluble chitosan (LMWSC) with high reactivity and strong positive charge can be applied as a delivery system having function to carry in the specific tissue the bioactive material like poor solubility drug, or therapeutic gene and developed as a therapeutic system having good therapeutic efficiency. The most important factor for therapy of various diseases is to reveal the antigen or receptor expressed in specific lesion tissue and the antibody and ligand which can bind with antigen is to introduce at the biomaterials for enhancement the therapeutic efficiency. The studies for cationic synthetic polymer as drug or gene delivery have been actively performed, but it has many problems such as toxicity in the body, therapeutic efficiency. From this point of view, this article demonstrated the introduction of functional groups to target the specific tissue and therapeutic strategy using the modification of LMWSC with free-amine group. The development of these delivery system will provide a positive vision for cancer therapy.

The Complex Salmonella typhimurium Ghost Cells Play an Additional Role as an Immune Adjuvant (면역보강제로서 부가적인 역할을 가지는 복합 살모넬라 타이피무리움 고스트 세포)

  • Ha, Yeon Jo;Kim, Seung Tae;Kang, Ho Young;Gal, Sang Wan;Kim, Sam Woong
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.154-160
    • /
    • 2014
  • Ghost cells have been recognized as eliciting humoral and cell-mediated immune responses and have also been predicted to play a role as an immune adjuvant. In this study, we used the intramuscular (IM) route to inject BALB/c mice with four vaccine groups constructed from Salmonella typhimurium ghost (STG) cells originating from different virulent strains and complex STG groups instead of heat-labile toxin (LT)-B, a type of adjuvant. Although the complex STG groups exhibited a response after a short delay, the groups showed final total IgG levels similar to those of the LT-B group, which encodes LT-B from pMMP300. The IgG1 response to the ${\chi}$3339 group was the highest response at 6 weeks, whereas IgG2a responses to the ${\chi}$3339 and JOL389 groups were higher at 6 and 8 weeks compared to those of the LT-B group. The response of vaginal sIgA to the LT-B group was generally higher than that of the other groups, whereas fecal sIgA to the LT-B group exhibited lower responses. Protection to virulent S. typhimurium in all groups was above 80%, which was similar to the LT-B group. Taken together, we suggest that STG complex groups can be used as an immune adjuvant instead of LT-B.

Biosensor System for the Detection of Agrichemicals and Its Applications (농약 검출을 위한 바이오센서 시스템 연구 및 그 응용)

  • Park, Tae-Jung;Yang, Min-Ho;Lee, Sang-Yup;Kim, Soo-Hyun
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.227-238
    • /
    • 2009
  • In the recent years, some organic toxic chemicals were used for obtaining high-yield productivity in agriculture. The undegraded pesticides may remain in the agricultural foods through atmosphere, water, and soil and cause public health problems to environmental resources and human beings even at very low concentrations. Small amounts of pesticides can affect a central nervous system, resulting in immunogenic diseases, infertility problems, respiratory diseases and born marrow diseases, which can lead even to death. Monitoring of the environmental pesticide is one of the important issues for the human well-being. Several kinds of biosensors have been successfully applied to the detection of agrichemical toxicity. Also, few platforms for biocide detection have been definitely developed for the degradation and reaction of pesticides. Biochip and electrochemistry experiments involve immobilizing a receptor molecule on a solid substrate surface, and monitoring its interaction with an analyze in a sample solution. Furthermore, nanotechnology can be applied to make high-throughput analyses that are smaller, faster and sensitive than conventional assays. Some nanomaterials or nanofabricated surfaces can be coupled to biomolecules and used in antibody-based assays and enzymatic methods for pesticide residues. The operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in agrichemical defection research and also describe the label-free biosensor for pesticides using various useful detection methods.

Application and Prospects of Molecular Imaging (분자영상의 적용분야 및 전망)

  • Choi, Guyrack;Lee, Sangbock
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.3
    • /
    • pp.123-136
    • /
    • 2014
  • In this paper, we study to classify molecular imaging and applications to predict future. Molecular imaging in vivo at the cellular level and the molecular level changes taking place to be imaged, that is molecular cell biology and imaging technology combined with the development of the new field. Molecular imaging is used fluorescence, bioluminescence, SPECT, PET, MRI, Ultrasound and other imaging technologies. That is applied to monitoring of gene therapy, cell tracking and monitoring of cell therapy, antibody imaging, drug development, molecular interaction picture, the near-infrared fluorescence imaging of cancer using fluorescence, bacteria using tumor-targeting imaging, therapeutic early assessment, prediction and therapy. The future of molecular imaging would be developed through fused interdisciplinary research and mutual cooperation, which molecular cell biology, genetics, chemistry, physics, computer science, biomedical engineering, nuclear medicine, radiology, clinical medicine, etc. The advent of molecular imaging will be possible to early diagnosis and personalized treatment of disease in the future.

Investigation of Immune Biomarkers Using Subcutaneous Model of M. tuberculosis Infection in BALB/c Mice: A Preliminary Report

  • Husain, Aliabbas A.;Daginawala, Hatim F.;Warke, Shubangi R.;Kalorey, Devanand R.;Kurkure, Nitin V.;Purohit, Hemant J.;Taori, Girdhar M.;Kashyap, Rajpal S.
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.83-90
    • /
    • 2015
  • Evaluation and screening of vaccines against tuberculosis depends on development of proper cost effective disease models along with identification of different immune markers that can be used as surrogate endpoints of protection in preclinical and clinical studies. The objective of the present study was therefore evaluation of subcutaneous model of M.tuberculosis infection along with investigation of different immune biomarkers of tuberculosis infection in BALB/c mice. Groups of mice were infected subcutaneously with two different doses : high ($2{\times}10^6CFU$) and low doses ($2{\times}10^2CFU$) of M.tuberculosis and immune markers including humoral and cellular markers were evaluated 30 days post M.tuberculosis infections. Based on results, we found that high dose of subcutaneous infection produced chronic disease with significant (p<0.001) production of immune markers of infection like $IFN{\gamma}$, heat shock antigens (65, 71) and antibody titres against panel of M.tuberculosis antigens (ESAT-6, CFP-10, Ag85B, 45kDa, GroES, Hsp-16) all of which correlated with high bacterial burden in lungs and spleen. To conclude high dose of subcutaneous infection produces chronic TB infection in mice and can be used as convenient alternative to aerosol models in resource limited settings. Moreover assessment of immune markers namely mycobacterial antigens and antibodies can provide us valuable insights on modulation of immune response post infection. However further investigations along with optimization of study protocols are needed to justify the outcome of present study and establish such markers as surrogate endpoints of vaccine protection in preclinical and clinical studies in future.