DOI QR코드

DOI QR Code

Therapeutic Strategy for the Prevention of Pseudorabies Virus Infection in C57BL/6 Mice by 3D8 scFv with Intrinsic Nuclease Activity

  • Lee, Gunsup (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Cho, SeungChan (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Hoang, Phuong Mai (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Dongjun (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Lee, Yongjun (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kil, Eui-Joon (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Byun, Sung-June (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Taek-Kyun (South Sea Environment Research Department, Korea Institute of Ocean Science and Technology) ;
  • Kim, Dae-Hyun (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Sunghan (Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Lee, Sukchan (Department of Genetic Engineering, Sungkyunkwan University)
  • Received : 2015.03.18
  • Accepted : 2015.06.22
  • Published : 2015.09.30

Abstract

3D8 single chain variable fragment (scFv) is a recombinant monoclonal antibody with nuclease activity that was originally isolated from autoimmune-prone MRL mice. In a previous study, we analyzed the nuclease activity of 3D8 scFv and determined that a HeLa cell line expressing 3D8 scFv conferred resistance to herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV). In this study, we demonstrate that 3D8 scFv could be delivered to target tissues and cells where it exerted a therapeutic effect against PRV. PRV was inoculated via intramuscular injection, and 3D8 scFv was injected intraperitoneally. The observed therapeutic effect of 3D8 scFv against PRV was also supported by results from quantitative reverse transcription polymerase chain reaction, southern hybridization, and immunohistochemical assays. Intraperitoneal injection of 5 and $10{\mu}g$ 3D8 scFv resulted in no detectable toxicity. The survival rate in C57BL/6 mice was 9% after intramuscular injection of 10 $LD_{50}$ PRV. In contrast, the 3D8 scFv-injected C57BL/6 mice showed survival rates of 57% ($5{\mu}g$) and 47% ($10{\mu}g$). The results indicate that 3D8 scFv could be utilized as an effective antiviral agent in several animal models.

Keywords

References

  1. Akaike, T., Noguchi, Y., Ijiri, S., Setoguchi, K., Suga, M., Zheng, Y.M., Dietzschold, B., and Maeda, H. (1996). Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc. Natl. Acad. Sci. USA 93, 2448-2453. https://doi.org/10.1073/pnas.93.6.2448
  2. Banks, P.R., and Paquette, D.M. (1995). Comparison of three common amine reactive fluorescent probes used for conjugation to biomolecules by capillary zone electrophoresis. Bioconjug. Chem. 6, 447-458. https://doi.org/10.1021/bc00034a015
  3. Boado, R.J., Zhou, Q.H., Lu, J.Z., Hui, E.K., and Pardridge, W.M. (2010). Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor. Mol. Pharm. 7, 237-244. https://doi.org/10.1021/mp900235k
  4. Breshears, M.A., Eberle, R., and Ritchey, J.W. (2005). Temporal progression of viral replication and gross and histological lesions in Balb/c mice inoculated epidermally with Saimiriine herpesvirus 1 (SaHV-1). J. Comp. Pathol. 133, 103-113. https://doi.org/10.1016/j.jcpa.2005.01.012
  5. Brinkley, M. (1992). A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents. Bioconjug. Chem. 3, 2-13. https://doi.org/10.1021/bc00013a001
  6. Brittle, E.E., Reynolds, A.E., and Enquist, L.W. (2004). Two modes of pseudorabies virus neuroinvasion and lethality in mice. J. Virol. 78, 12951-12963. https://doi.org/10.1128/JVI.78.23.12951-12963.2004
  7. Daigle, J., and Carr, D.J. (1998). Androstenediol antagonizes herpes simplex virus type 1-induced encephalitis through the augmentation of type I IFN production. J. Immunol. 160, 3060-3066.
  8. Dory, D., Torche, A.M., Beven, V., Blanchard, P., Loizel, C., Cariolet, R., and Jestin, A. (2005). Effective protection of pigs against lethal Pseudorabies virus infection after a single injection of lowdose Sindbis-derived plasmids encoding PrV gB, gC and gD glycoproteins. Vaccine 23, 3483-3491. https://doi.org/10.1016/j.vaccine.2004.10.050
  9. Enquist, L.W. (1999). Life beyond eradication: veterinary viruses in basic science. Arch. Virol. Suppl. 15, 87-109.
  10. Erlich, K.S., and Mills, J. (1985). Chemotherapy for herpes simplex virus infections. West J. Med. 143, 648-655.
  11. Ferraris, O., and Lina, B. (2008). Mutations of neuraminidase implicated in neuraminidase inhibitors resistance. J. Clin. Virol. 41, 13-19. https://doi.org/10.1016/j.jcv.2007.10.020
  12. Field, H.J., and Hill, T.J. (1974). The pathogenesis of pseudorabies in mice following peripheral inoculation. J. Gen. Virol. 23, 145-157. https://doi.org/10.1099/0022-1317-23-2-145
  13. Fox, Z., Dragsted, U.B., Gerstoft, J., Phillips, A.N., Kjaer, J., Mathiesen, L., Youle, M., Katlama, C., Hill, A., Bruun, J.N., et al. (2006). A randomized trial to evaluate continuation versus discontinuation of lamivudine in individuals failing a lamivudinecontaining regimen: the COLATE trial. Antivir. Ther. 11, 761-770.
  14. Gerdts, V., Jons, A., Makoschey, B., Visser, N., and Mettenleiter, T.C. (1997). Protection of pigs against Aujeszky's disease by DNA vaccination. J. Gen. Virol. 78 (Pt 9), 2139-2146. https://doi.org/10.1099/0022-1317-78-9-2139
  15. Grieco, V., Gelmetti, D., Finazzi, G., Brocchi, E., and Finazzi, M. (1997). Immunohistologic diagnosis of pseudorabies (Aujeszky's disease) using monoclonal antibodies. J. Vet. Diagn. Invest. 9, 326-328. https://doi.org/10.1177/104063879700900320
  16. Haas, J., Meyding-Lamade, U., Fath, A., Stingele, K., Storch-Hagenlocher, B., and Wildemann, B. (1999). Acyclovir treatment of experimentally induced herpes simplex virus encephalitis: monitoring the changes in immunologic NO synthase expression and viral load within brain tissue of SJL mice. Neurosci. Lett. 264, 129-132. https://doi.org/10.1016/S0304-3940(99)00191-3
  17. Haimov-Kochman, R., Fisher, S.J., and Winn, V.D. (2006). Modification of the standard Trizol-based technique improves the integrity of RNA isolated from RNase-rich placental tissue. Clin. Chem. 52, 159-160. https://doi.org/10.1373/clinchem.2005.059758
  18. Hoang, P.M., Cho, S., Kim, K.E., Byun, S.J., Lee, T.K., and Lee, S. (2014). Development of Lactobacillus paracasei harboring nucleic acid-hydrolyzing 3D8 scFv as a preventive probiotic against murine norovirus infection. Appl. Microbiol. Biotechnol. 99, 2793-2803.
  19. Hong, W., Xiao, S., Zhou, R., Fang, L., He, Q., Wu, B., Zhou, F., and Chen, H. (2002). Protection induced by intramuscular immunization with DNA vaccines of pseudorabies in mice, rabbits and piglets. Vaccine 20, 1205-1214. https://doi.org/10.1016/S0264-410X(01)00416-9
  20. Hsieh, M.F., Lai, S.L., Chen, J.P., Sung, J.M., Lin, Y.L., Wu-Hsieh, B.A., Gerard, C., Luster, A., and Liao, F. (2006). Both CXCR3 and CXCL10/IFN-inducible protein 10 are required for resistance to primary infection by dengue virus. J. Immunol. 177, 1855-1863. https://doi.org/10.4049/jimmunol.177.3.1855
  21. Jang, J., Jeong, J., Jun, H., Lee, S., Kim, J., Kim, Y., and Kwon, M. (2009). A nucleic acid-hydrolyzing antibody penetrates into cells via caveolae-mediated endocytosis, localizes in the cytosol and exhibits cytotoxicity. Cell. Mol. Life Sci. 66, 1985-1997. https://doi.org/10.1007/s00018-009-9179-2
  22. Jun, H.R., Pham, C.D., Lim, S.I., Lee, S.C., Kim, Y.S., Park, S., and Kwon, M.H. (2010). An RNA-hydrolyzing recombinant antibody exhibits an antiviral activity against classical swine fever virus. Biochem. Biophys. Res. Commun. 395, 484-489. https://doi.org/10.1016/j.bbrc.2010.04.032
  23. Jung, Y.D., Ha, H.S., Park, S.J., Oh, K.B., Im, G.S., Kim, T.H., Seong, H.H., and Kim, H.S. (2013). Identification and promoter analysis of PERV LTR subtypes in NIH-miniature pig. Mol. Cells 35, 99-105. https://doi.org/10.1007/s10059-013-2289-6
  24. Kim, Y.R., Kim, J.S., Lee, S.H., Lee, W.R., Sohn, J.N., Chung, Y.C., Shim, H.K., Lee, S.C., Kwon, M.H., and Kim, Y.S. (2006). Heavy and light chain variable single domains of an anti-DNA binding antibody hydrolyze both double- and single-stranded DNAs without sequence specificity. J. Biol. Chem. 281, 15287-15295. https://doi.org/10.1074/jbc.M600937200
  25. Koziel, M.J., and Peters, M.G. (2007). Viral hepatitis in HIV infection. N Engl. J. Med. 356, 1445-1454. https://doi.org/10.1056/NEJMra065142
  26. Laskin, O.L. (1984). Acyclovir. Pharmacology and clinical experience. Arch. Intern. Med. 144, 1241-1246. https://doi.org/10.1001/archinte.1984.00350180181025
  27. Le, Q.M., Kiso, M., Someya, K., Sakai, Y.T., Nguyen, T.H., Nguyen, K.H., Pham, N.D., Ngyen, H.H., Yamada, S., Muramoto, Y., et al. (2005). Avian flu: isolation of drug-resistant H5N1 virus. Nature 437, 1108. https://doi.org/10.1038/4371108a
  28. Lee, G., Shim, H.K., Kwon, M.H., Son, S.H., Kim, K.Y., Park, E.Y., Lee, T.K., Lee, W.R., Auh, C.K., and Kim, D. (2013a). A nucleic acid hydrolyzing recombinant antibody confers resistance to curtovirus infection in tobacco. Plant Cell Tissue Organ Culture 115, 179-187. https://doi.org/10.1007/s11240-013-0357-4
  29. Lee, G., Shim, H.K., Kwon, M.H., Son, S.H., Kim, K.Y., Park, E.Y., Yang, J.K., Lee, T.K., Auh, C.K., and Kim, D. (2013b). RNA virus accumulation is inhibited by ribonuclease activity of 3D8 scFv in transgenic Nicotiana tabacum. Plant Cell Tissue Organ Culture 115, 189-197. https://doi.org/10.1007/s11240-013-0351-x
  30. Lee, G., Yu, J., Cho, S., Byun, S.J., Kim, D.H., Lee, T.K., Kwon, M.H., and Lee, S. (2014). A nucleic-acid hydrolyzing single chain antibody confers resistance to DNA virus infection in hela cells and C57BL/6 mice. PLoS Pathog. 10, e1004208. https://doi.org/10.1371/journal.ppat.1004208
  31. McCracken, R.M., McFerran, J.B., and Dow, C. (1973). The neural spread of pseudorabies virus in calves. J. Gen. Virol. 20, 17-28.
  32. Morfin, F., and Thouvenot, D. (2003). Herpes simplex virus resistance to antiviral drugs. J. Clin. Virol. 26, 29-37. https://doi.org/10.1016/S1386-6532(02)00263-9
  33. Ono, E., Yoshino, S., Amagai, K., Taharaguchi, S., Kimura, C., Morimoto, J., Inobe, M., Uenishi, T., and Uede, T. (2004). Enhanced resistance to herpes simplex virus type 1 infection in transgenic mice expressing a soluble form of herpesvirus entry mediator. Virology 320, 267-275. https://doi.org/10.1016/j.virol.2003.11.031
  34. Pensaert, M., and Kluge, J. (1989). Virus infections of porcines (Amsterdam, The Netherlands: Elsevier Science Publishers BV).
  35. Ramos-Vara, J.A. (2005). Technical aspects of immunohistochemistry. Vet. Pathol. 42, 405-426. https://doi.org/10.1354/vp.42-4-405
  36. Shimada, T., Nomura, M., Yokogawa, K., Endo, Y., Sasaki, T., Miyamoto, K., and Yonemura, Y. (2005). Pharmacokinetic advantage of intraperitoneal injection of docetaxel in the treatment for peritoneal dissemination of cancer in mice. J. Pharm. Pharmacol. 57, 177-181. https://doi.org/10.1211/0022357055380
  37. Stegeman, A., de Jong, M.C., van Nes, A., and Bouma, A. (1997). Dynamics of pseudorabies virus infections in vaccinated pig populations: a review. Vet. Q 19, 117-122. https://doi.org/10.1080/01652176.1997.9694754
  38. Su, Y.H., Yan, X.T., Oakes, J.E., and Lausch, R.N. (1996). Protective antibody therapy is associated with reduced chemokine transcripts in herpes simplex virus type 1 corneal infection. J. Virol. 70, 1277-1281.
  39. Yoon, H.A., Han, Y.W., Aleyas, A.G., George, J.A., Kim, S.J., Kim, H.K., Song, H.J., Cho, J.G., and Eo, S.K. (2008). Protective immunity induced by systemic and mucosal delivery of DNA vaccine expressing glycoprotein B of pseudorabies virus. J. Microbiol. Biotechnol. 18, 591-599.

Cited by

  1. Probiotic Lactobacillus Paracasei Expressing a Nucleic Acid-Hydrolyzing Minibody (3D8 Scfv) Enhances Probiotic Activities in Mice Intestine as Revealed by Metagenomic Analyses vol.9, pp.6, 2018, https://doi.org/10.3390/genes9060276
  2. Pharmacokinetic parameters and mechanism of action of an efficient anti-Aβ single chain antibody fragment vol.14, pp.5, 2015, https://doi.org/10.1371/journal.pone.0217793
  3. The 3D8 single chain variable fragment protein suppresses Newcastle disease virus transmission in transgenic chickens vol.16, pp.None, 2015, https://doi.org/10.1186/s12917-020-02462-9
  4. 3D8 scFv 형질전환 돼지 개발 및 PRRS 저항성 평가 vol.43, pp.4, 2015, https://doi.org/10.7853/kjvs.2020.43.4.227
  5. Broad-Spectrum Antiviral Activity of 3D8, a Nucleic Acid-Hydrolyzing Single-Chain Variable Fragment (scFv), Targeting SARS-CoV-2 and Multiple Coronaviruses In Vitro vol.13, pp.4, 2015, https://doi.org/10.3390/v13040650