• Title/Summary/Keyword: Antibody Engineering

Search Result 349, Processing Time 0.028 seconds

Production of Monoclonal Antibody against the Principal Metabolite of Cocaine, Benzoylecgonine (코카인의 주대사물인 벤조일에코닌에 대한 단일클론 항체의 제작)

  • Nam, Kyung-Soo;Kim, Jae-Wha;Oh, Eun-Suk;Choi, Myung-Ja;Choi, In-Seong;Chung, Tai-Wha
    • YAKHAK HOEJI
    • /
    • v.36 no.2
    • /
    • pp.188-190
    • /
    • 1992
  • Two clones of monconal antibodies(Co-1 and Co-2) against BSA-benzoylecgonine(BSABE) were produced. Both monoclonal antibodies showed high binding affinity to BSA-BE. Observing from ELISA inhibition assay, Co-1 reacted only weakly with soluble benzoylecgonine, while Co-2 showed considerable reactivity with soluble benzoylecgonine.

  • PDF

Immunoaffinity Characteristics of Exosomes from Breast Cancer Cells Using Surface Plasmon Resonance Spectroscopy

  • Sohn, Young-Soo;Na, Wonhwi;Jang, Dae-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.355-359
    • /
    • 2019
  • Exosomes, known as nanoscale extracellular vesicles in the range of 30-150 nm, are known to contain clinically significant information. However, there is still insufficient information on exosomal membrane proteins for cancer diagnosis. In this work, we investigated the characteristics of the membrane proteins of exosomes shed by cultured breast cancer cell lines using a surface plasmon resonance (SPR) spectroscopy and pre-activated alkanethiols modified sensor chips. The antibodies of breast cancer biomarkers such as MCU-16, EpCAM, CD24, ErbB2, and CA19-9 were immobilized on the pre-activated alkanethiols surfaces without any activation steps. The purified exosomes were loaded onto each antibody surface. The affinity rank of the antibody surfaces was decided by the relative capture efficiency factors for the exosomes. In addition, an antibody with a relative capture efficiency close to 100% was tested with exosome concentration levels of 104/µl, 105/µl, and 106/µl for quantitative analysis.

Polyhydroxyalkanoate Chip for the Specific Immobilization of Recombinant Proteins and Its Applications in Immunodiagnostics

  • Park, Tae-Jung;Park, Jong-Pil;Lee, Seok-Jae;Hong, Hyo-Jeong;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.173-177
    • /
    • 2006
  • In this study, a novel strategy was developed for the highly selective immobilization of proteins, using the polyhydroxyalkanoate (PHA) depolymerase substrate binding domain (SBD) as an active binding domain. In order to determine the appropriacy of this method for immunodiagnostic assays, the single-chain antibody (ScFv) against the hepatitis B virus (HBV) preS2 surface protein and the severe acute respiratory syndrome coronavirus (SARS-CoV) envelope protein (SCVe) were fused to the SBD, then directly immobilized on PH A-coated slides via microspotting. The fluorescence-labeled HBV antigen and the antibody against SCVe were then utilized to examine specific interactions on the PHA-coated surfaces. Fluorescence signals were detected only at the spotted positions, thereby indicating a high degree of affinity and selectivity for their corresponding antigens/antibodies. Furthermore, we detected small amounts of ScFv-SBD (2.7 ng/mL) and SCVe-SBD fusion proteins (0.6ng/mL). Therefore, this microarray platform technology, using PHA and SBD, appears generally appropriate for immunodiagnosis, with no special requirements with regard to synthetic or chemical modification of the biomolecules or the solid surface.

Periplasmic Expression of a Recombinant Antibody (MabB9) in Escherichia coli

  • Chang, Hae-Choon;Kwak, Ju-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.299-304
    • /
    • 1997
  • Expression in the periplasm of Escherichia coli of cloned heavy and light chain cDNAs for Fab fragment of a murine monoclonal antibody MabB9 (${\gamma}2b$, K), specific for human plasma apolipoprotein B-100 of LDL, was studied. For the purpose, a vector for two-cistronic expression of the heavy chain cDNA, at the 5' terminus, and light chain cDNA, at the 3' terminus, was constructed using the signal sequences, pelB (for heavy chain) and ompA (for light chain) in a pET vector system. The constructed vector was transformed into E. coli BL21(DE3). The expressed heavy chain (25 kDa) and light chain (23 kDa) of the antibody molecule were detected in total cell extracts as well as in the periplasmic extracts of E. coli.

  • PDF

Gemtuzumab ozogamicin and Antibody Engineering (Gemtuzumab ozogamicin과 항체공학)

  • Kim, Eun-Young
    • Korean Journal of Clinical Pharmacy
    • /
    • v.19 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • Gemtuzumab ozogamicin (GO) is an antibody-targeted chemotherapeutic agent consisting of calicheamicin, a potent cytotoxic antibiotic linked to a recombinant humanized anti CD33 monoclonal antibody directed against the CD33 antigen present on leukemic myeloblasts in most patients with acute myeloid leukemia (AML). GO is indicated for the treatment of patients with CD33 positive AML in first relapse who are 60 years of age or older and who are not considered candidates for cytotoxic chemotherapy. GO has shown moderate activity as a single agent in patients with CD33-positive refractory or relapsed acute myeloid leukaemia, with more promising results in acute promyelocytic leukaemia. The side effect profile may be an improvement on conventional chemotherapy, except for a higher frequency of veno-occlusive disease or sinusoidal obstructive syndrome, especially after a subsequent haematopoietic stem cell transplantation. Because of the different mechanisms of action and non-overlapping toxicities, the integration of this immunoconjugate with standard chemotherapy is a rational approach.

  • PDF

Biosensor for Detection of Yersinia enterocolitica based on imaging ellipsometry (이미지 엘립소미트리를 이용한 예시니아 검출용 바이오센서 개발)

  • Y. M. Bae;Park, K. W.;Park, J. W.;S. I. Cho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.07a
    • /
    • pp.421-426
    • /
    • 2003
  • The Immunosensor based on antigen-antibody binding have been developed for detecting several analytes including antigen, small molecules, and cell. This method can be rapid and show very good detection limits. For Implementation of immunosensor, technologies for immobilization of antibody onto solid surface and detection of protein-protein binding must be developed. (an ellipsis)

  • PDF

Genetically engineered brain drug delivery vector through the blood-brain barrier

  • Seo, Kyung-Hee;Kang, Young-Sook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.192-192
    • /
    • 1998
  • The blood - brain barrier (BBB) expresses high concentrations of transferrin receptor, and it was revealed that anti-transferrin receptor mouse monoclonal antibody (OX26) undergoes transcytosis through the BBB. This property allows the OX26 to serve as a brain drug delivery vector. In an attempt to produce broadly useful targeting agents, genetic engineering and expression techniques have been used to produce antibody-avidin (AV) fusion protein (OX26 IgG3C$\_$H/3-AV). In the present study we estimated the BBB permeability and stability of genetically engineered vector.

  • PDF

Electrochemical Immunosensor Using a Gas Diffusion Layer as an Immobilization Matrix

  • Kim, Yong-Tae;Oh, Kyu-Ha;Kim, Joo-Ho;Kang, Hee-Gyoo;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1975-1979
    • /
    • 2011
  • The modification of a gas diffusion layer (GDL), a vital component in polymer electrolyte fuel cells, is described here for use in the electrochemical detection of antibody-antigen biosensors. Compared to other substrates (gold foil and graphite), mouse anti-rHBsAg monoclonal antibody immobilized on gold-coated GDL (G-GDL) detected analytes of goat anti-mouse IgG antibody-ALP using a relatively low potential (-0.0021 V vs. Ag/AgCl 3 M NaCl), indicating that undesired by-reactions during electrochemical sensing should be avoided with G-GDL. The dependency of the signal against the concentration of analytes was observed, demonstrating the possibility of quantitative electrochemical biosensors based on G-GDL substrates. When a sandwich method was employed, target antigens of rHBsAg with a concentration as low as 500 ng/mL were clearly measured. The detection limit of rHBsAg was significantly improved to 10 ng/mL when higher concentrations of the 4-aminophenylphosphate monosodium salt (APP) acting on substrates were used for generating a redox-active product. Additionally, it was shown that a BSA blocking layer was essential in improving the detection limit in the G-GDL biosensor.