• Title/Summary/Keyword: Antibody Engineering

Search Result 351, Processing Time 0.026 seconds

Antibody Engineering (항체공학)

  • 홍효정
    • The Microorganisms and Industry
    • /
    • v.17 no.1
    • /
    • pp.51-55
    • /
    • 1991
  • 쥐의 단일클론항체는 기초연구에 뿐만 아니라 질병의 진단시약으로서도 광범위하게 유용되어 왔다. 반면, 쥐의 단일클론항체를 인체에 임상적으로 사용하는 것은 인체에 면역반응을 유발시킨다는 근본적인 문제점 때문에 어려운 일이라 인식되어 왔다. 그러나, 최근 2-3년간 유전자 기술과 단백질공학적인 방법에 의하여 쥐의 단일클론항체를 인간화시키거나 항체절편의 생산을 시도하게 되어, 단일클론항체의 임상적인 이용에 대한 가능성이 긍정적으로 진단되고 있다. 본 난에서는 항체의 구조와 기능을 간략히 살펴보고, 최근 항체의 단백질공학에 대한 경향과 방법 및 engineered 항체의 특성들에 관하여 논의하고자 한다.

  • PDF

Characteristics of Protein G-modified BioFET

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.226-229
    • /
    • 2011
  • Label-free detection of biomolecular interactions was performed using BioFET(Biologically sensitive Field-Effect Transistor) and SPR(Surface Plasmon Resonance). Qualitative information on the immobilization of an anti-IgG and antibody-antigen interaction was gained using the SPR analysis system. The BioFET was used to explore the pI value of the protein and to monitor biomolecular interactions which caused an effective charge change at the gate surface resulting in a drain current change. The results show that the BioFET can be a useful monitoring tool for biomolecular interactions and is complimentary to the SPR system.

A comparison of detection capabilities of anti-IgG immobilizedby protein G and NHS (Protein G와 NHS를 이용하여 고정한 anti-IgG의 검출 성능 비교)

  • Sin, Eun-Jung;Sohn, Young-Ho;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.142-148
    • /
    • 2010
  • We have compared and investigated the detection capabilities of antibody of immunoglobulin G(anti-IgG) immobilized by protein G and N-hydroxysuccinimide(NHS) at the end of the self-assembled monolayer(SAM). Surface plasmon resonance(SPR) sensor has been utilized to measure the interaction between biomolecules. After formation of the protein G and SAM, anti-IgG, bovine serum albumin(BSA) and IgG has been sequently injected. Through the reponse of the SPR, we can conclude that the protein G immobilized anti-IgG better than the SAM. In addition, IgG detection capability of the anti-IgG immobilized by the protein G showed better performance compared with that immobilized by the SAM.

Detection of Streptavidin-Biotin Complexes Using a Highly Sensitive AlGaN/GaN-Based Extended-Gate MISHEMT-Type Biosensor

  • Lee, Hee Ho;Bae, Myunghan;Choi, Byoung-Soo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.320-325
    • /
    • 2016
  • In this paper, we propose an AlGaN/GaN-based extended-gate metal-insulator-semiconductor high electron mobility transistor (MISHEMT)-type biosensor for detecting streptavidin-biotin complexes. We measure the drain current of the fabricated sensor, which varies depending on the antibody-antigen reaction of streptavidin with biotin molecules. To confirm the immobilization of biotin polyethylene glycol (PEG) thiol, we analyze the Au surface of a GaN sample using X-ray photoelectron spectroscopy (XPS). The proposed biosensor shows higher sensitivity than Si-based extended-gate metal oxide semiconductor field effect transistor (MOSFET)-type biosensor. In addition, the proposed AlGaN/GaN-based extended-gate MISHEMT-type biosensor exhibits better long-term stability, compared to the conventional AlGaN/GaN-based MISHEMT-type biosensor.

Thiolated Protein A-functionalized Bimetallic Surface Plasmon Resonance Chip for Enhanced Determination of Amyloid Beta 42

  • Kim, Hyung Jin;Kim, Chang-Duk;Sohn, Young-Soo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.379-383
    • /
    • 2019
  • The capability of detecting amyloid beta 42 ($A{\beta}42$), a biomarker of Alzheimer's disease, using a thiolated protein A-functionalized bimetallic surface plasmon resonance (SPR) chip was investigated. An optimized configuration of a bimetallic chip containing gold and silver was obtained through calculations in the intensity measurement mode. The surface of the SPR bimetallic chip was functionalized with thiolated protein A for the immobilization of $A{\beta}42$ antibody. The response of the thiolated protein A-functionalized bimetallic chip to $A{\beta}42$ in the concentration range of 50 to 1,000 pg/mL was linear. Compared to protein A without thiolation, the thiolated protein A resulted in greater sensitivity. Therefore, the thiolated protein A-functionalized bimetallic SPR chip can be used to detect very low concentrations of the biomarker for Alzheimer's disease.

Analysis of Human Serum Amyloid A-1 Concentrations Using a Lateral Flow Immunoassay with CdSe/ZnS Quantum Dots (Human Serum Amyloid A-1 단백질 농도 분석을 위한 CdSe/ZnS 양자점 기반의 Lateral Flow Immunoassay 방법 개발)

  • Fajri, Aidil;Goh, Eunseo;Lee, Sanghyuk;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.429-434
    • /
    • 2019
  • A lateral flow immunoassay platform utilizing antibody functionalized water soluble CdSe/ZnS semiconductor quantum dots (QDs) was developed for the analysis of human serum amyloid A-1 (hSAA1) in a buffer solution. hSAA1 was chosen as a target protein because it is regarded as a potential biomarker associated with early diagnosis and prognosis in patients of lung cancer. The immunoassay strip on a nitrocellulose membrane was fabricated by spraying two lines composed of a test line with a monoclonal antibody against hSAA1 (10G1) (anti hSAA1) and a control line of anti-chicken IgY. While the CdSe/ZnS QDs synthesized in an organic phase were transferred to a water phase by ligand exchange using carboxylic acid modified alkane thiol. The QDs was then conjugated to monoclonal antibody against hSAA1 (14F8) [anti hSAA1 (14F8)] and used as a fluorescent detection probe. The sequential lateral flow of hSAA1 in different concentration and QDs-anti hSAA1 (14F8) complex allowed to form the surface sandwich complex of anti hSAA1 (10G1)/hSAA1/QD-anti hSAA1 (14F8), which was then analyzed using fluorescence microscope. A 100 nM concentration of hSAA1 protein can be detected by naked eyes under an optimized lateral flow buffer condition with a sensing time of 5 mins.

Development of COVID-19 Neutralizing Antibody (NAb) Detection Kits Using the S1 RBD Protein of SARS-CoV-2 (코로나 바이러스 감염증-19의 재조합 S1 RBD 단백질을 이용한 COVID-19 바이러스의 중화항체 검사 키트의 개발)

  • Choi, Dong Ok;Lee, Kang Moon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.3
    • /
    • pp.257-265
    • /
    • 2021
  • The COVID-19 virus is a β-genus virus that causes infection by mediating the angiotensin convertible enzyme 2 (ACE2) receptor, which is distributed in large numbers in the human respiratory tract. The disease requires effective post-management of antibody production by complete healers and vaccinators because there is no perfect remedy for the virus infection. This study aimed to develop recombinant proteins specifically responsive to neutralizing antibodies in clinical specimens and use them to develop a rapid diagnostic kit to diagnose neutralizing antibodies quickly and conveniently against the COVID-19 virus and confirm the possibility of commercialization through a performance evaluation. Rapid diagnostic kits using COVID-19 S1 RBD recombinant proteins can be applied to rapid diagnostic kits, with positive percentage agreement (PPA) and negative percentage agreement (NPA) of 100% and 98.3%, respectively, compared to the U.S. FDA-approved ELISA kits. If the performance of the rapid diagnostic kit is improved and neutralizing antibodies can be analyzed quantitatively using quantitative analysis equipment, it can be used as important data to predict immunity to the COVID-19 virus and determine additional vaccinations.

Plant-based production of therapeutic antibodies (식물기반 치료용 항체생산)

  • Kim, Young-Kwan;So, Yang-Kang;Park, Da-Young;Kim, Hyun-Soon;Jeon, Jae-Heung;Choo, Young-Kug;Ko, Ki-Sung
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • Antibodies are powerful and versatile tools to play a critical role in the diagnosis and treatment of many diseases. Their application has been enhanced significantly with the advanced recombinant DNA and heterologonous expression technologies, allowing to produce immunotherapeutic proteins with improved biofunctional properties. However, with currently available technologies, mammalian cell-based therapeutic antibody production, as an alternative for production in humans and animals, is often not plentiful for passive immunotherapeutics in treatment of many diseases. Recently, plant expression systems for therapeutic antibodies have become well-established. Thus, plants have been considered to provide an attractive alternative production system for therapeutic antibodies, as plants have several advantages such as the lack of human pathogens, and low cost of upstream production and flexible scale-up of highly valuable recombinant glycoproteins. Recent advances in modification of posttranslational processing for human-like glycosylation in transgenic plants will make it possible that plant can become a suitable protein expression system over the animal cellbased current production system. This review will discuss recent advances in plant expression technology and issues for their application to therapeutic antibody production.

Polymeric Materials for Molecular Recognition

  • Ki, Chang-Do;Lee, Kang-Won;Chang, Ji-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.172-172
    • /
    • 2006
  • Molecular imprinting constitutes a valuable method of preparing polymeric materials with specific binding properties. The most conspicuous merit of molecular imprinting is that structurally three-dimensional recognition sites can be introduced into a polymer matrix with ease and low cost when compared with the complicated process of biological system for antigen and antibody. We used a thermally reversible bond for the preparation of the monomer-template complex, which allowed us to remove the template easily by means of a simple thermal reaction and to simultaneously introduce various functional groups into the cavity. This method is especially propitious for developing artificial receptors for molecules lacking strongly interactive groups.

  • PDF

RT-PCR Detection of Citrus Tristeza Virus form Early Satsuma Nandarin and Yuzu in Cheju Island

  • Kim, Daehyun;Jaewook Hyun;Hyunsik Hwang;Lee, Sukchan
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.48-51
    • /
    • 2000
  • Citrus tristeza virus (CTV) was identified form CTV-infected early satsuma mandarin (Citus unshiu) and yuzu (C.junos) by RT-PCR. The total RNAs were isolated from citrus bark and seaf tissues infected with CTV and reverse transcription was followed with primers designed for amplifying CTV coat protein gene. DNA fragments 738 bp were amplified by RT-PCR and these products were colned for sequence analysis. Based on the sequence analysis, this PCR product has 97% sequence homology to CTV (T-385) CP gene isolated from USA. RT-PCR assay for CTV detection was more sensitivity than ELISA assay which was done with anti-CTV CP antibody. This is the frist report about CTV identification in Cheju island Korea.

  • PDF