Browse > Article
http://dx.doi.org/10.14478/ace.2019.1029

Thiolated Protein A-functionalized Bimetallic Surface Plasmon Resonance Chip for Enhanced Determination of Amyloid Beta 42  

Kim, Hyung Jin (Department of Biomedical Engineering, Daegu Catholic University)
Kim, Chang-Duk (Department of Physics, Kyungpook National University)
Sohn, Young-Soo (Department of Biomedical Engineering, Daegu Catholic University)
Publication Information
Applied Chemistry for Engineering / v.30, no.3, 2019 , pp. 379-383 More about this Journal
Abstract
The capability of detecting amyloid beta 42 ($A{\beta}42$), a biomarker of Alzheimer's disease, using a thiolated protein A-functionalized bimetallic surface plasmon resonance (SPR) chip was investigated. An optimized configuration of a bimetallic chip containing gold and silver was obtained through calculations in the intensity measurement mode. The surface of the SPR bimetallic chip was functionalized with thiolated protein A for the immobilization of $A{\beta}42$ antibody. The response of the thiolated protein A-functionalized bimetallic chip to $A{\beta}42$ in the concentration range of 50 to 1,000 pg/mL was linear. Compared to protein A without thiolation, the thiolated protein A resulted in greater sensitivity. Therefore, the thiolated protein A-functionalized bimetallic SPR chip can be used to detect very low concentrations of the biomarker for Alzheimer's disease.
Keywords
Surface plasmon resonance; Amyloid beta 42; Alzheimer's disease; Intensity measurement;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. H. Kim, T. U. Kim, H. Y. Jung, H. C. Ki, D. G. Kim, and B.-T. Lee, The effect of Au/Ag bimetallic thin-films on surface plasmon resonance properties comparing with those of Au and Ag single thin-films, J. Nanosci. Nanotechnol., 18, 1777-1781 (2018).   DOI
2 J. M. Fowler, M. C. Stuart, and D. K. Y. Wong, Self-assembled layer of thiolated protein G as an immunosensor scaffold, Anal. Chem., 79, 350-354 (2007).   DOI
3 S. Ghose, M. Allen, B. Hubbard, C. Brooks, and S. M. Cramer, Antibody variable region interactions with protein A: Implications for the development of generic purification processes, Biotechnol. Bioeng., 92, 666-673 (2005).
4 P. B. Johnson and R. W. Christy, Optical constants of the noble metals, Phys. Rev. B, 6, 4370-4379 (1972).   DOI
5 R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, C. Pederzolli, G. Pucker, and L. Pavesi, Sensitivity and limit of detection of biosensors based on ring resonators, Sens. Biosensing Res., 6, 99-102 (2015).   DOI
6 M. A. Carvajal, J. Ballesta-Claver, A. Martinez-Olmos L. F. Capitan-Vallvey, and A. J. Palma, Portable system for photodiode-based electrochemiluminescence measurement with improved limit of detection, Sens. Actuators B, 221, 956-961 (2015).   DOI
7 Y. K. Yoo, J. Kim, G. Kim, Y. S. Kim, H. Y. Kim, S. Lee, W. W. Cho, S. Kim, S.-M. Lee, B. C. Lee, J. H. Lee, and K. S. Hwang, A highly sensitive plasma-based amyloid-${\beta}$ detection system through medium-changing and noise cancellation system for early diagnosis of the Alzheimer's disease, Sci. Rep., 7, 8882 (2017).   DOI
8 F. S. Diba, S. Kim, and H. J. Lee, Electrochemical immunoassay for amyloid-beta 1-42 peptide in biological fluids interfacing with a gold nanoparticle modified carbon surface, Catal. Today, 295, 41-47 (2017).   DOI
9 N. Xia, L. Liu, M. G. Harrington, J. Wang, and F. Zhou, Regenerable and simultaneous SPR detection of $A{\beta}$(1-40) and $A{\beta}$(1-42) peptides in cerebrospinal fluids with signal amplification by streptavidin conjugated to an N-terminus-specific antibody, Anal. Chem., 82, 10151-10157 (2010).   DOI
10 I.-H. Chou, M. Benford, H. T. Beier, G. L. Cote, M. Wang, N. Jing, J. Kameoka, and T. A. Good, Nanofluidic biosensing for ${\beta}$-amyloid detection using surface enhanced raman spectroscopy (SERS), Nano Lett., 8, 1729-1735 (2008).   DOI
11 J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: Review, Sens. Actuators B, 54, 3-15 (1999).   DOI
12 H. Sipova and J. Homola, Surface plasmon resonance sensing of nucleic acids: A review, Anal. Chim. Acta, 773, 9-23 (2013).   DOI
13 T.-F. Ma, Y.-P. Chen, J.-S. Guo, and W. Wang, Cellular analysis and detection using surface plasmon resonance imaging, Trends Analyt. Chem., 103, 102-109 (2018).   DOI
14 F.-C. Chien and S.-J. Chen, A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes, Biosens. Bioelectron., 20, 633-642 (2004).   DOI
15 Y. K. Lee, Y.-S. Sohn, K.-S. Lee, W. M. Kim, and J.-O. Lim, Waveguide-coupled bimetallic film for enhancing the sensitivity of a surface plasmon resonance sensor in a fixed-angle mode, J. Korean Phys. Soc., 62, 475-480 (2013).   DOI
16 World Health Organization, Dementia, Key facts, http://www.who.int/news-room/fact-sheets/detail/dementia, Accessed in January (2019).
17 S. A. Gale, D. Acar, and K. R. Daffner, Dementia, Am. J. Med., 131, 1161-1169 (2018).   DOI
18 C. Humpel, Identifying and validating biomarkers for Alzheimer's disease, Trends Biotechnol., 29, 26-32 (2011).   DOI
19 R. J. Perrin, A. M. Fagan, and D. M. Holtzman, Multi-modal techniques for diagnosis and prognosis of Alzheimer' disease, Nature, 461, 916-922 (2009).   DOI
20 K. Blennow, B. Dubois, A. M. Fagan, P. Lewczuk, M. J. de Leon, and H. Hampel, Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer's disease, Alzheimers Dement., 11, 58-69 (2015).   DOI
21 S. G. Reich and J. M. Savitt, Parkinson disease, Med. Clin. North Am., 103, 337-350 (2019).   DOI
22 A. M. Sanford, Lewy body dementia, Clin. Geriatr. Med., 34, 603-615 (2018).   DOI
23 M. Bruuna, J. Koikkalainen, H. F. M. Rhodius-Meester, M. Baroni, L. Gjerum, M. van Gils, H. Soininen, A. M. Remes, P. Hartikainen, G. Waldemar, P. Mecocci, F. Barkhof, Y. Pijnenburg, W. M. van der Flier, S. G. Hasselbalch, J. Lotjonen, and K. S. Frederiksen, Detecting frontotemporal dementia syndromes using MRI biomarkers, Neuroimage Clin., 22, 101711 (2019).   DOI
24 S. M. Cho, H. V. Kim, S. Lee, H. Y. Kim, W. Kim, T. S. Kim, D. J. Kim, and Y. S. Kim, Correlations of amyloid-${\beta}$ concentrations between CSF and plasma in acute Alzheimer mouse model, Sci. Rep., 4, 6777 (2014).   DOI
25 T. Kasai, T. Tokuda, M. Taylor, M. Kondo, D. M. A. Mann, P. G. Foulds, M. Nakagawa, and D. Allsop, Correlation of $A{\beta}$ oligomer levels in matched cerebrospinal fluid and serum samples, Neurosci. Lett., 551, 17-22 (2013).   DOI
26 L. Janssen, F. Sobott, P. P. D. Deyn, and D. V. Dam, Signal loss due to oligomerization in ELISA analysis of amyloid-beta can be recovered by a novel sample pre-treatment method, MethodsX, 2, 112-123 (2015).   DOI
27 A. C. Klaver, L. M. Patrias, J. M. Finke, and D. A. Loeffler, Specificity and sensitivity of the Abeta oligomer ELISA, J. Neurosci. Methods, 195, 249-254 (2011).   DOI
28 K.-S. Lee, T. S. Lee, I. Kim, and W. M. Kim, Parametric study on the bimetallic waveguide coupled surface plasmon resonance sensors in comparison with other configurations, J. Phys. D, 46, 125302 (2013).   DOI
29 X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, Sensitivity-stability optimized surface plasmon resonance sensing with double metal layers, J. Opt. A, 8, 959-963 (2006).   DOI
30 H.-S. Lee, T.-Y. Seong, W. M. Kim, I. Kim, G.-W. Hwang, W. S. Lee, and K.-S. Lee, Enhanced resolution of a surface plasmon resonance sensor detecting C-reactive protein via a bimetallic waveguide-coupled mode approach, Sens. Actuators. B, 266, 311-317 (2018).   DOI
31 H. J. Kim, Y.-S. Sohn, C.-D. Kim, and D.-H. Jang, Surface plasmon resonance sensing of a biomarker of alzheimer disease in an intensity measurement mode with a bimetallic chip, J. Korean Phys. Soc., 69, 793-797 (2016).   DOI