• 제목/요약/키워드: Antibacterial coating

검색결과 55건 처리시간 0.025초

화학적 침식을 받은 콘크리트구조물의 보수기술 개발과 실용화연구 (A Study on the Development and the Practical Approach for Repair Method of RC Structures Subjected to the Chemical Attack)

  • 문한영;신동구;권영진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권2호
    • /
    • pp.155-162
    • /
    • 2005
  • 본 연구는 하수시설과 같은 열악한 환경에서의 구조물의 열화원인에 대하여 분석한 후 내구성회복을 위하여 항균성개질재와 무기질단면피복재의 개발을 통한 보수공법을 구축하였다. 또한 항균성개질재와 무기질단면 피복재의 복합 사용할 경우에 있어서 이들의 특성평가를 위하여 항균시험, 침투성시험, 침투후의 강도특성 및 전자현미경(SEM)을 이용하여 항균성개질재의 작용에 의한 마이크로조직의 변화특성을 평가하였다. 또한 습윤면에 부착성이 우수한 방식피복재와 항균성개질재의 복합에 의한 내구특성시험을 실시한 후 공정별 상호 부착특성을 파악하기 위하여 현장시험시공과 더불어 실구조물(하수구조물, 지하철구조물)에 적용 후 부착특성을 평가하여 개발된 보수기술에 대한 현장 적용성을 분석하였다.

구리 기반 표면코팅 및 산화수에 따른 항균·항바이러스 특성 (Copper-based Surface Coatings and Antimicrobial Properties Dependent on Oxidation States)

  • 고상원
    • 공업화학
    • /
    • 제34권5호
    • /
    • pp.479-487
    • /
    • 2023
  • 구리(Cu)는 저렴한 비용으로 용이하게 도입이 가능하여 다양한 소재 표면에 살균 코팅제로 쓰이고 있다. 자연적 산화 반응이 구리의 효능을 손상시키지 않아 장기간 노출 조건에서도 항균 성능을 유지할 수 있다. 더 나아가 구리 화합물은 그람 음성균 및 그람 양성균 뿐만 아니라, 병원성 효모, 외피 보유 및 외피 미보유 타입의 바이러스에 대해 모두 폭넓은 살균 효과를 보인다. 구리 코팅 표면의 접촉 살균은 구리의 침투로 단백질 변성을 일으키고 세포막 손상으로 뉴클레오티드 및 세포질 등의 내용물이 용출되게 한다. 또한 구리 산화환원 활성에 의한 활성 산소종 생성으로 효소작용을 억제하고 DNA를 파괴하여 세포를 영구적으로 손상시킨다. 구리는 안정한 금속 성질 때문에 나노입자, 이온, 복합물, 합금 등의 여러 형태로 쓰이고 있으며 코팅 방법이 다양하다. 본 총설에서는 구리 이온과 구리 산화물의 대표적인 표면 도입 방법을 살펴보고 구리 산화수에 따른 항균·항바이러스 특성을 다루고자 한다.

키토산-은나노 녹색합성 복합물질 적용 코팅지의 항균성 및 물리적 특성 평가 (Evaluation of the Antibacterial and Physical Properties of Paper Coated with Chitosan-Ag Nanocomposite Prepared by Green Synthesis)

  • 경규선;양희태;이우석;박지명;고성혁
    • 펄프종이기술
    • /
    • 제46권4호
    • /
    • pp.28-36
    • /
    • 2014
  • We studied the green synthesis and antibacterial activity of paper coated with chitosan-silver (Ag) green nanocomposites for packaging applications. Green synthesis of Ag nanoparticles (AgNPs) was achieved by a chemical reaction involving a mixture of chitosan-silver nitrate ($AgNO_3$) in an autoclave at 15 psi, $121^{\circ}C$, for 30 min. AgNPs and their formation in chitosan was confirmed by UV-Vis spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS). As-prepared chitosan-AgNPs composite materials were coated on manila paper using Meyer rod. Surface morphology and Ag contents in coating layer were characterized by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). The mechanical properties such as tensile strength and elongation were significantly affected by coating with chitosan-AgNPs. The antibacterial test of coated paper was performed qualitatively and quantitatively against Escherichia coli (E. coli). It was shown to be effective in suppressing the growth of E. coli with increasing Ag contents on the surface of coated paper and more than 95 R (%) of antimicrobial rate was obtained at chitosan-AgNPs coated papers.

Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties

  • Venugopal, Adith;Muthuchamy, Nallal;Tejani, Harsh;Anantha-Iyengar-Gopalan, Anantha-Iyengar-Gopalan;Lee, Kwang-Pill;Lee, Heon-Jin;Kyung, Hee Moon
    • 대한치과교정학회지
    • /
    • 제47권1호
    • /
    • pp.3-10
    • /
    • 2017
  • Objective: Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. Methods: AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti-AgNP) and the second involved coating them with a AgNP-coated biopolymer (Ti-BP-AgNP). The topologies, microstructures, and chemical compositions of the surfaces of the Ti-nAg were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Disk diffusion tests using Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans were performed to test the antibacterial activity of the Ti-nAg microimplants. Results: SEM revealed that only a meager amount of AgNPs was sparsely deposited on the Ti-AgNP surface with the first method, while a layer of AgNP-coated biopolymer extended along the Ti-BP-AgNP surface in the second method. The diameters of the coated nanoparticles were in the range of 10 to 30 nm. EDS revealed 1.05 atomic % of Ag on the surface of the Ti-AgNP and an astounding 21.2 atomic % on the surface of the Ti-BP-AgNP. XPS confirmed the metallic state of silver on the Ti-BP-AgNP surface. After 24 hours of incubation, clear zones of inhibition were seen around the Ti-BP-AgNP microimplants in all three test bacterial culture plates, whereas no antibacterial effect was observed with the Ti-AgNP microimplants. Conclusions: Titanium microimplants modified with Ti-BP-AgNP exhibit excellent antibacterial properties, making them a promising implantable biomaterial.

Ag 또는 CuO를 코팅한 평판형 ZnO 분말의 합성 및 항균성 평가 (Preparation and Antibacterial Properties of the Planar-Type ZnO Powder Coated with Ag or CuO)

  • 홍다희;곽지유;전덕성;조동현;이건섭;이정환;이희철
    • 한국표면공학회지
    • /
    • 제54권3호
    • /
    • pp.144-151
    • /
    • 2021
  • In the present work, planar-type ZnO powder of [0001] plane with a high aspect ratio range of 20:1 to 50:1 was synthesized. Ag or CuO could be coated on the planar-type ZnO powder by wet methods such as centrifugation or ball milling. During the coating, the average size of the powder was slightly increased while maintaining the shape and XRD pattern of ZnO. When Ag or CuO was coated, the absolute value of the zeta potential, as well as the concentration of oxygen vacancy, was increased. Ag or CuO coated planar-type ZnO power exhibited excellent antibacterial performance, which seems to be related to their high electrostatic attraction force. They could be made into a masterbatch by mixing with ABS resin, and their applicability to antibacterial substances was confirmed by manufacturing the caps of a keyboard.

키토산-은나노 녹색합성 복합물질을 적용한 항균 기능성 포장지 연구 (A Study of Antibacterial Paper Packaging Material Coated with Chitosan-Ag Nanocomposite Prepared by Green Synthesis)

  • 경규선;고성혁
    • 펄프종이기술
    • /
    • 제46권2호
    • /
    • pp.8-15
    • /
    • 2014
  • A novel antibacterial paper coated with chitosan-based silver (Ag) nanocomposite prepared by green synthesis has been investigated for a wide range of application in food, agricultural and medical packaging. Green synthesis of Ag nanoparticles (AgNPs) was carried out by a chemical reaction involving a mixture of chitosan-silver nitrate (AgNO3) in an autoclave at 15 psi, $121^{\circ}C$, for 15-120 sec. AgNPs and their formation in chitosan were confirmed by both UV-Vis spectroscopy and transmission electron microscope (TEM). Fourier transform infrared spectroscopy (FTIR) study showed that free amino groups in chitosan act as an effective reductant and AgNPs stabilizer. Antibacterial test of coated paper with as-prepared chitosan-AgNPs was performed qualitatively against E. coli based on the formation of halo zones around coated papers and it was shown to be effective in suppressing the growth of E. coli with increasing Ag contents in coating layer.

식품산업용 천연항균소재와 나노기술 (Natural antibacterial materials and nanotechnology for food industry)

  • 한샘;윤태미;최태호;김진용;박지운;박신제;김용노;;이지은;최신식
    • 식품과학과 산업
    • /
    • 제51권3호
    • /
    • pp.245-258
    • /
    • 2018
  • Natural and synthetic antibacterial materials are used in foods to avoid bacterial contamination-induced food poison and deterioration. Due to the human and environmental safety, natural products including plant extracts have been extensively added into foods as antibacterial materials. Since some of core molecules comprised in those plant extracts are hardly dissolved in aqueous phases or food matrixes, nanotechnological approaches have been suggested to overcome such obstacles. Here we report domestic and international various types of plant- or non-plant-origin antibacterial materials that have been commercialized and used for the food industry. To improve solubility and stability of such antibacterial materials, nano-encapsulation or nano-complexation methods are also investigated focusing on the utilization of dextrins and proteins as coating materials.

Electrochemical Deposition of Copper on Polymer Fibers

  • Lim, Seung-Lin;Kim, Jaecheon;Park, Jongdeok;Kim, Sohee;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.132-138
    • /
    • 2016
  • In this study, we report the fabrication of functional complex fibers, which have been studied widely globally for numerous applications. Here, we fabricated conductive complex fibers with antibacterial properties by coating metal ions on the surface of plastic (polypropylene) fibers using the electroless and electrochemical deposition. First, we polished the polypropylene melt-blown fiber surface and obtained an absorbing Pd seed layer on its surface. Subsequently, we substituted the Pd with Cu. Bis-3-sulfopropyl-disulfide disodium salt (SPS), polyethylene glycol (PEG), and ethylene thiourea (ETU) were used as the brightener, carrier, and leveler, respectively for the electroplating. We focused on most achieving the stable plating condition to remove dendrites, which are normally during electroplating metals so that smooth layer is formed on the fiber surface. The higher the amount of SPS, the higher was the extent of irregular plate-like growth. Many irregularities in the form of round spheres were observed with increase in the amount of PEG and ETU. Hence, when the additives were used separately, a uniform coating could not be obtained. A stable coating was obtained when the three additives were combined and a uniform 5-9 μm thick copper layer with a stable morphology could be obtained around the fiber. We believe that our results can be applied widely to obtain conductive fibers with antibacterial properties and are useful in aiding research on conductive lightweight composite fibers for application in information technology and robotics.

Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films

  • Cao, Shuai;Wang, Ye;Cao, Lin;Wang, Yu;Lin, Bingpeng;Lan, Wei;Cao, Baocheng
    • 대한치과교정학회지
    • /
    • 제46권3호
    • /
    • pp.146-154
    • /
    • 2016
  • Objective: Different methods have been utilized to prevent enamel demineralization and other complications during orthodontic treatment. However, none of these methods can offer long-lasting and effective prevention of orthodontic complications or interventions after complications occur. Considering the photocatalytic effect of $TiO_2$ on organic compounds, we hoped to synthesize a novel bracket with a $TiO_2$ thin film to develop a photocatalytic antimicrobial effect. Methods: The sol-gel dip coating method was used to prepare $TiO_2$ thin films on ceramic bracket surfaces. Twenty groups of samples were composed according to the experimental parameters. Crystalline structure and surface morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively; film thickness was examined with a surface ellipsometer. The photocatalytic properties under ultraviolet (UV) light irradiation were analyzed by evaluating the degradation ratio of methylene blue (MB) at a certain time. Antibacterial activities of selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. Results: Films with 5 coating layers annealed at $700^{\circ}C$ showed the greatest photocatalytic activity in terms of MB decomposition under UV light irradiation. $TiO_2$ thin films with 5 coating layers annealed at $700^{\circ}C$ exhibited the greatest antimicrobial activity under UV-A light irradiation. Conclusions: These results provide promising guidance in prevention of demineralization by increasing antimicrobial activities of film coated brackets.

Water-soluble microencapsulation using gum Arabic and skim milk enhances viability and efficacy of Pediococcus acidilactici probiotic strains for application in broiler chickens

  • Ratchnida Kamwa;Benjamas Khurajog;Nongnuj Muangsin;Pawiya Pupa;David J Hampson;Nuvee Prapasarakul
    • Animal Bioscience
    • /
    • 제37권8호
    • /
    • pp.1440-1451
    • /
    • 2024
  • Objective: This study aimed to develop and evaluate the effectiveness of a water-soluble microencapsulation method for probiotic strains using gum Arabic (GA) and skim milk (SKM) over a three-month storage period following processing. Methods: Four strains of Pediococcus acidilactici (BYF26, BYF20, BF9, and BF14) that were typical lactic acid bacteria (LAB) isolated from the chicken gut were mixed with different ratios of GA and SKM as coating agents before spray drying at an inlet temperature 140℃. After processing, the survivability and probiotic qualities of the strains were assessed from two weeks to three months of storage at varied temperatures, and de-encapsulation was performed to confirm the soluble properties. Finally, the antibacterial activity of the probiotics was assessed under simulated gastrointestinal conditions. Results: As shown by scanning electron microscopy, spray-drying produced a spherical, white-yellow powder. The encapsulation efficacy (percent) was greatest for a coating containing a combination of 30% gum Arabic: 30% skim milk (w/v) (GA:SKM30) compared to lower concentrations of the two ingredients (p<0.05). Coating with GA:SKM30 (w/v) significantly enhanced (p<0.05) BYF26 survival under simulated gastrointestinal conditions (pH 2.5 to 3) and maintained higher survival rates compared to non-encapsulated cells under an artificial intestinal juices condition of pH 6. De-encapsulation tests indicated that the encapsulated powder dissolved in water while keeping viable cell counts within the effective range of 106 for 6 hours. In addition, following three months storage at 4℃, microencapsulation of BYF26 in GA:SKM30 maintained both the number of viable cells (p<0.05) and the preparation's antibacterial efficacy against pathogenic bacteria, specifically strains of Salmonella. Conclusion: Our prototype water-soluble probiotic microencapsulation GA:SKM30 effectively maintains LAB characteristics and survival rates, demonstrating its potential for use in preserving probiotic strains that can be used in chickens and potentially in other livestock.