Browse > Article
http://dx.doi.org/10.23093/FSI.2018.51.3.245

Natural antibacterial materials and nanotechnology for food industry  

Han, Saem (Dyne soze Co., Ltd.)
Yoon, Tae Mi (Dyne soze Co., Ltd.)
Choi, Tae Ho (Dyne soze Co., Ltd.)
Kim, Jin Yong (Dyne soze Co., Ltd.)
Park, Ji Woon (Department of Biosystems & Biomaterials Science and Engineering, College of Agricultue and Life Sciences (CALS), Seoul National University)
Park, Shin Jae (Department of Biosystems & Biomaterials Science and Engineering, College of Agricultue and Life Sciences (CALS), Seoul National University)
Kim, Yong Ro (Department of Biosystems & Biomaterials Science and Engineering, College of Agricultue and Life Sciences (CALS), Seoul National University)
Abdur, Razzak Md. (Department of Food and Nutrition, College of Natural Science, Myongji University)
Lee, Ji Eun (Department of Food and Nutrition, College of Natural Science, Myongji University)
Choi, Shin Sik (Department of Food and Nutrition, College of Natural Science, Myongji University)
Publication Information
Food Science and Industry / v.51, no.3, 2018 , pp. 245-258 More about this Journal
Abstract
Natural and synthetic antibacterial materials are used in foods to avoid bacterial contamination-induced food poison and deterioration. Due to the human and environmental safety, natural products including plant extracts have been extensively added into foods as antibacterial materials. Since some of core molecules comprised in those plant extracts are hardly dissolved in aqueous phases or food matrixes, nanotechnological approaches have been suggested to overcome such obstacles. Here we report domestic and international various types of plant- or non-plant-origin antibacterial materials that have been commercialized and used for the food industry. To improve solubility and stability of such antibacterial materials, nano-encapsulation or nano-complexation methods are also investigated focusing on the utilization of dextrins and proteins as coating materials.
Keywords
antibacterial materials; dextrin; food additives; nanotechnology; protein;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Mahmoud. K. F., Ramada, K. M. and Ashoush, I. S. Nanoencapsulation and nanoemulsion of bioactive compounds to enhance their antioxidant activity in food. Int. J. Food Sci. Tech. 4(3): 1-21 (2014)
2 Kumar, M. N. V. R. A review of chitin and chitosan applications. Reactive & Functional Polymers. 46: 1-27 (2000)   DOI
3 Lee, Y. C., Oh, S. W. and Hong, H. D. Antimicrobial characteristics of edible medicinal herbs extracts. Kor. J. Food Sci. Technol. 34: 700-709 (2002)
4 Lee, Y. E. and Yoo, I. S. Effect of Storage temperature on the dispersion stability of O/W Nano-emulsions. Korean Soc. Biotech. Bioeng. J. 29(5): 385-391 (2014)
5 Levinson, Y., Ish-Shalom, S., Segal, E., &Livney, Y. D. (2016). Bioavailability, rheology and sensory evaluation of fat-free yogurt enriched with VD 3 encapsulated in re-assembled casein micelles. Food & function, 7(3), 1477-1482.   DOI
6 Li, K. K., Yin, S. W., Yin, Y. C., Tang, C. H., Yang, X. Q., & Wen, S. H. (2013). Preparation of water-soluble antimicrobial zein nanoparticles by a modified antisolvent approach and their characterization. Journal of Food Engineering, 119(2), 343-352.   DOI
7 Liu, Y., Ying, D., Cai, Y., & Le, X. (2017). Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization. Food Hydrocolloids, 72, 304-311.   DOI
8 Sebastien, F. and Robert, W. E. Lactoferrin-a multifunctional protein with antimicrobial properties. Molecular Immunol. 40: 395-405 (2003)   DOI
9 Shin, J. M., Gwak, J. W., Kamarajan, P., Fenno, J. C., Rickard, A. H. and Kapila, Y. L. Biomedical applications of nisin. J. Appl. Microbiol. 120: 1449-1465 (2016)   DOI
10 Slomkowski, S., Aleman, J. V., Gilbert, R. G., Hess, M., Horie, K., Jones, R. G., Kubisa, P., Meisel, I., Mormann, W., Penczek, S. and Stepo, R. F. T. Terminology of polymers and polymerization processes in dispersed systems. Pure Appl. Chem. 83: 2229-2259 (2011)   DOI
11 Mangolim, C. S., Moriwaki, C., Nogueira, A. C., Sato, F., Baesso, M. L., Neto, A. M., and Matioli, G. Curcumin-${\beta}$-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem, 153: 361-370 (2014)   DOI
12 Gomez-Estaca, J., Balaguer, M. P., Gavara, R., & Hernandez-Munoz, P. (2012). Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocolloids, 28(1), 82-91.   DOI
13 Gomez-Estaca, J., Balaguer, M. P., Lopez-Carballo, G., Gavara, R., & Hernandez-Munoz, P. (2017). Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocolloids, 70, 313-320.   DOI
14 Hedges, A. R., Shieh, W. J., and Sikorski, C. T. Use of Cyclodextrins for Encapsulation in the Use and Treatment of Food Products. In Encapsulation and Controlled Release of Food Ingredients, vol. 590 (pp. 60-71): American Chemical Society. (1995)
15 Kang, C. H., Kim, Y. G., Han, S. H., Jeong, H. L. and Paek, N. S. Antibacterial activity and probiotic properties of lactic acid bacteria from Korean intestine origin. Korean Soc. Biotechnol. Bioengineering J. 32:153-159 (2017)
16 Kito, M., Onji, Y., Yoshida, T. and Nagasawa, T. Occurrence of ${\varepsilon}$-poly-L-lysine-degrading enzyme in ${\varepsilon}$-poly-L-lysine-tolerant Sphingobacterium multivorumOJ10: purification and characterization. FEMS Microbiol. Lett. 207: 147-151 (2002)
17 Ko, E. M. and Kim, B. Y. Antimicrobial activity of ${\varepsilon}$-polylysine mixtures against food-born pathogens. J. Kor. Sci. Food Sci. Nutr. 33: 705-710 (2004)   DOI
18 Sylvester, W. S., Son, R., Lew, K. F. and Rukayadi, Y. Antibacterial activity of java turmeric (Curcuma xanthorrhizaRoxb.) extract against Klebsiella pneumoniaisolated from several vegetables. Int. Food Res. J. 22: 1770-1776 (2015)
19 Szente, L., and Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol, 15: 137-142 (2004)   DOI
20 Szente, L., and Szejtli, J. Molecular Encapsulation of Natural and Synthetic Coffee Flavor with ${\beta}$-Cyclodextrin. J. Food Sci, 51: 1024- 1027 (1986)   DOI
21 Mao, L., Roos, Y. H., Biliaderis, C. G. and Miao, S. Food emulsions as delivery systems for flavor compounds: A review. Food Sci. Nutr. 57(15): 3173-3187 (2017)
22 Masschalck, B. and Michiels C. W. Antimicrobial properties of lysozyme in relation to food borne vegetative bacteria. Critical Rev. Microbiol. 29:191-214 (2003)   DOI
23 Isabel, C., Margarita, A., Filomena, S. and Cristina, N. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innovative Food Sci. Emerging Technol. 36: 26-33 (2016)   DOI
24 Yoshida, T. and Nagasawa, T. ${\varepsilon}$-Poly-L-lysine: microbial production, biodegradation and application potential. Appl. Microbiol, Biotechnol. 62: 21-26 (2003)   DOI
25 Zhao, M., Wang, H., Yang, B., and Tao, H. Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food Chem, 120: 1138-1142 (2010)   DOI
26 Nunes, I. L., and Mercadante, A. Z. Encapsulation of lycopene using spray-drying and molecular inclusion processes. Brazilian Archives of Biology and Technology, 50: 893-900 (2007)   DOI
27 Oancea, A. M., Aprodu, I., Ghinea, I. O., Barbu, V., Ioniţa, E., Bahrim, G., ... & Stanciuc, N. (2017). A bottom-up approach for encapsulation of sour cherries anthocyanins by using ${\beta}$-lactoglobulin as matrices. Journal of Food Engineering, 210, 83-90.   DOI
28 Oliveira, J. R., Jesus, D., Figueira, L. W., Oliveira, F. E., Pacheco, S. C., Camargo, S. E., Jorge, A. O. and Oliveira, L. D. Biological activities of Rosmarinus officinalisL. extract as analyzed in microorganisms and cells. Exp. Biol. Med. 242: 625-634 (2017)   DOI
29 Rakmai, J., Cheirsilp, B., Mejuto, J. C., Torrado-Agrasar, A., and Simal-Gandara, J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids, 65: 157-164 (2017)   DOI
30 Rho, S. J., Mun, S., Hong, J. S., Kim, Y. L., Do, H. V., Kim, Y. W., Han, S. I., and Kim, Y. R. Physicochemical interactions of cycloamylose with phenolic compounds. Carbohydr. Polym, 174: 980-989 (2017)   DOI
31 Santos, E. H., Kamimura, J. A., Hill, L. E., and Gomes, C. L. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT-Food Science and Technology, 60: 583-592 (2015)   DOI
32 Truong, G. K. and Yi, M. G. Molecular dynamics simulation studies of the effects of the protonation state of chitosan in interactions with bacterial membranes. Korean J. Fish Aquat. Sci. 49: 815-822 (2016)
33 Wang, L., Yang, R., Yuan B., Liu, Y. and Lium C. The antiviral and antimicrobial activities of licorice, a widely-used chinese herb. Acta PharmaceuticaSinica B. 5: 310-315 (2015)
34 Wang, T., Li, B., Si, H., Lin, L., and Chen, L. Release characteristics and antibacterial activity of solid state eugenol/${\beta}$-cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem, 71: 207-213 (2011)   DOI
35 Wang, X., Jiang, Y., Wang Y. W., Huang, M. T., Ho, C. T. and Huang, Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 108(2): 419-424 (2008)   DOI
36 Wang, Y., Mcallister, T. A., Yanke, L. J. and Cheeke, P. R. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J. Appl. Microbiol. 88: 887-896 (1992)
37 Weiss, J., Takhistov, P. and McClements, D. J. Functional materials in food nanotechnology. J. Food Sci. 71: 107-116 (2006)   DOI
38 Wu, Y., Luo, Y., & Wang, Q. (2012). Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid-liquid dispersion method. LWT-Food Science and Technology, 48(2), 283-290.   DOI
39 Wulff, E. G., Zida, E., Torp, J. and Lund, O. S. Yucca schidigera extract: a potential biofungicide against seedborne pathogens of sorghum. Plant Pathology. 61: 331-338 (2012)   DOI
40 Yan, Y., Xing, L. J., Zhou, G. H. and Zhang, W. G. Antioxidative and antibacterial activities of rosemary extract in raw ground pork patties. J. Food Nutr. Res. 4: 806-813 (2016)
41 Coleman, A. W., Munoz, M., Chatjigakis, A. K., and Cardot, P. Classification of the solubility behaviour of ${\beta}$-cyclodextrin in aqueous-CO-solvent mixtures. J. Phys. Org. Chem, 6: 651-659 (1993)   DOI
42 Davidson, P. M. and Post, L. S. Naturally occurring and miscellaneous food antimicrobials. In Antimicobials in foods. Branen, A. L. and Davidson, P. M. (Eds.), Marcel Dekker, Inc., New York. p. 371 (1983)
43 Denyer, S. P. and Stewart, G. S. A. B. 1998. Mechanisms of action of disinfectants. Int. Biodeter. Biodegr. 41: 261-268 (1998)   DOI
44 Gomes, L. M. M., Petito, N., Costa, V. G., Falcao, D. Q., and de Lima Araujo, K. G. Inclusion complexes of red bell pepper pigments with ${\beta}$-cyclodextrin: Preparation, characterisation and application as natural colorant in yogurt. Food Chem, 148: 428-436 (2014)   DOI
45 Zorzi, G. K., Caregnato, F., Moreira, J. C. F., Teixeira, H. F. and Carvalho, E. L. S. Antioxidant effect of nanoemulsions containing extract of Achyroclinesatureioides (Lam) D.C. - Asteraceae. Am. Assoc. PS Pharm. Sci. 17(4): 844-850 (2015)
46 Takii, H., Kometani, T., Nishimura, T., Kuriki, T., and Fushiki, T. A Sports Drink Based on Highly Branched Cyclic Dextrin Generates Few Gastrointestinal Disorders in Untrained Men during Bicycle Exercise Food Sci. Technol. Res, 10: 428-431 (2004)   DOI
47 Tang, P., Li, S., Wang, L., Yang, H., Yan, J., and Li, H. Inclusion complexes of chlorzoxazone with ${\beta}$- and hydroxypropyl-${\beta}$- cyclodextrin: Characterization, dissolution, and cytotoxicity. Carbohydr. Polym, 131: 297-305 (2015)   DOI
48 Teng, Z., Luo, Y., & Wang, Q. (2012). Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation. Journal of agricultural and food chemistry, 60(10), 2712-2720.   DOI
49 Badr, S., Karem, H. A., Hussein, H. and Hadedy, D. E. Characterization of nisin produced by Lactococcus lactis. Int. J. Agric. Biol. 7: 499-503 (2005)
50 Bhandari, B. R., D'Arc, B. R., and ThiBich, L. L. Lemon Oil to ${\beta}$-Cyclodextrin Ratio Effect on the Inclusion Efficiency of ${\beta}$-Cyclodextrin and the Retention of Oil Volatiles in the Complex. J. Agric. Food Chem, 46: 1494-1499 (1998)   DOI
51 Bishnu, P. C., Zeev W. and Leah, T. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Industrial Crops and Prod. 26: 109-115 (2007)   DOI
52 Borges, A., Abreu, A. C., Ferreira, C., Saavedra, M. J., Simoes, L. C. and Simoes, M. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. J. Food Sci. Technol. 52:4737-4748 (2015)   DOI
53 An, B. J. The material of natural anti-bacterial agents for the food preservative. J. Kor. Soc. Food. Sci. Nutr. 4: 5-16 (1999)
54 Ankita, C., and Jayanthi, A., Microbial Contamination, Prevention, and Early Detection in Food Industry. Handbook of Food Bioengineering:21-47 (2018)
55 Branen, J. K. and Davidson, P. M. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ehtylenediamine tetra acetic acid and lactoferrin. J. Food Microbiol. 90: 63-74 (2004)   DOI
56 Chen, J., Zheng, J., McClements, D. J., & Xiao, H. (2014). Tangeretinloaded protein nanoparticles fabricated from zein/${\beta}$-lactoglobulin:Preparation, characterization, and functional performance. Food chemistry, 158, 466-472.   DOI
57 Chen, X., Chen, R., Guo, Z., Li, C., and Li, P. The preparation and stability of the inclusion complex of astaxanthin with ${\beta}$-cyclodextrin. Food Chem, 101: 1580-1584 (2007)   DOI
58 Choi, M. J., Ruktanonchai, U., Min, S. G., Chun, J. Y., and Soottitantawat, A. Physical characteristics of fish oil encapsulated by ${\beta}$-cyclodextrin using an aggregation method or polycaprolactone using an emulsion-diffusion method. Food Chem, 119: 1694-1703 (2010)   DOI
59 Hemmila, M. R., Mattar, A., Taddonio, M. A., Arbabi, S., Hamouda, T., Ward, P. A., Wang, S. C. and Baker, J. R., Jr. Topical nanoemulsion therapy reduces bacterial wound infection and inflammation after burn injury. Surgery. 148: 499-509 (2010)   DOI
60 Hill, L. E., Gomes, C., and Taylor, T. M. Characterization of betacyclodextrin inclusion complexes containing essential oils (transcinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT-Food Science and Technology, 51: 86-93 (2013)   DOI
61 Hwang, J. K., Kim, H. J., Shim, J. S. and Pyun, Y. R. Bactericidal activity of chitosan on streptococcus mutans. Korean J. Food Sci. Technol. 31: 522-526 (1999)
62 Hwang, J. K., Shim, J. S. and Pyun, Y. R. Antibacterial activity of xanthorrhizol from Curcuma xanthorrhiza against oral pathogens. Fitoterapia 71: 321-323 (2000)   DOI
63 Hwang, Y. Y., Ramalingam, K., Bienek, D. R., Lee, V., You, T. and Alvareza, R. Antimicrobial activity of nanoemulsion in combination with cetylpyridinium chloride in multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemoth. 57(8): 3568-3575 (2013)   DOI
64 Irani, M., Sarmadi, M., Bernard, F., Ebrahimi Pour, G. H. and Shaker B. H. Leaves antimicrobial activity of Glycyrrhiza glabraL. Iran J. Pharm. Res. 9: 425-428 (2010)
65 Lopez, M. D., Maudhuit, A., Pascual-Villalobos, M. J., and Poncelet, D. Development of Formulations to Improve the Controlled-Release of Linalool to Be Applied As an Insecticide. J. Agric. Food Chem, 60:1187-1192 (2012)   DOI
66 Lu, Y., Joerger, R. and Wu, C. Study of the chemical composition and antimicrobial activities of ethanolic extracts from roots of Scutellariabaicalensis Georgi. J. Agric. Food Chem. 59: 10934-10942 (2011)   DOI