DOI QR코드

DOI QR Code

Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films

  • Cao, Shuai (Department of Orthodontics, School of Dentistry, Lanzhou University) ;
  • Wang, Ye (Department of Orthodontics, School of Dentistry, Lanzhou University) ;
  • Cao, Lin (Department of Orthodontics, School of Dentistry, Lanzhou University) ;
  • Wang, Yu (Department of Orthodontics, School of Dentistry, Lanzhou University) ;
  • Lin, Bingpeng (Department of Orthodontics, School of Dentistry, Lanzhou University) ;
  • Lan, Wei (Department of Physics, School of Physical Science and Technology, Lanzhou University) ;
  • Cao, Baocheng (Department of Orthodontics, School of Dentistry, Lanzhou University)
  • Received : 2015.01.24
  • Accepted : 2015.07.28
  • Published : 2016.05.25

Abstract

Objective: Different methods have been utilized to prevent enamel demineralization and other complications during orthodontic treatment. However, none of these methods can offer long-lasting and effective prevention of orthodontic complications or interventions after complications occur. Considering the photocatalytic effect of $TiO_2$ on organic compounds, we hoped to synthesize a novel bracket with a $TiO_2$ thin film to develop a photocatalytic antimicrobial effect. Methods: The sol-gel dip coating method was used to prepare $TiO_2$ thin films on ceramic bracket surfaces. Twenty groups of samples were composed according to the experimental parameters. Crystalline structure and surface morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively; film thickness was examined with a surface ellipsometer. The photocatalytic properties under ultraviolet (UV) light irradiation were analyzed by evaluating the degradation ratio of methylene blue (MB) at a certain time. Antibacterial activities of selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. Results: Films with 5 coating layers annealed at $700^{\circ}C$ showed the greatest photocatalytic activity in terms of MB decomposition under UV light irradiation. $TiO_2$ thin films with 5 coating layers annealed at $700^{\circ}C$ exhibited the greatest antimicrobial activity under UV-A light irradiation. Conclusions: These results provide promising guidance in prevention of demineralization by increasing antimicrobial activities of film coated brackets.

Keywords

References

  1. Bishara SE, Fehr DE. Ceramic brackets: something old, something new, a review. Semin Orthod 1997;3:178-88. https://doi.org/10.1016/S1073-8746(97)80068-0
  2. Eliades T, Lekka M, Eliades G, Brantley WA. Surface characterization of ceramic brackets: a multitechnique approach. Am J Orthod Dentofacial Orthop 1994;105:10-8. https://doi.org/10.1016/S0889-5406(94)70094-X
  3. Eissaa OE, El-Shourbagy EM, Ghobashy SA. In vivo effect of a fluoride releasing adhesive on inhibition of enamel demineralization around orthodontic brackets. Tanta Dent J 2013;10:86-96. https://doi.org/10.1016/j.tdj.2013.08.007
  4. Tufekci E, Dixon JS, Gunsolley JC, Lindauer SJ. Prevalence of white spot lesions during orthodontic treatment with fixed appliances. Angle Orthod 2011;81:206-10. https://doi.org/10.2319/051710-262.1
  5. Richter AE, Arruda AO, Peters MC, Sohn W. Incidence of caries lesions among patients treated with comprehensive orthodontics. Am J Orthod Dentofacial Orthop 2011;139:657-64. https://doi.org/10.1016/j.ajodo.2009.06.037
  6. Gorelick L, Geiger AM, Gwinnett AJ. Incidence of white spot formation after bonding and banding. Am J Orthod 1982;81:93-8. https://doi.org/10.1016/0002-9416(82)90032-X
  7. Chatterjee R, Kleinberg I. Effect of orthodontic band placement on the chemical composition of human incisor tooth plaque. Arch Oral Biol 1979;24:97-100. https://doi.org/10.1016/0003-9969(79)90056-6
  8. Ogaard B. White spot lesions during orthodontic treatment: mechanisms and fluoride preventive aspects. Semin Orthod 2008;14:183-93. https://doi.org/10.1053/j.sodo.2008.03.003
  9. Scheie AA, Arneberg P, Krogstad O. Effect of orthodontic treatment on prevalence of Streptococcus mutans in plaque and saliva. Scand J Dent Res 1984;92:211-7.
  10. Mattsson A, Lejon C, Bakardjieva S, Stengl V, Osterlund L. Characterisation, phase stability and surface chemical properties of photocatalytic active Zr and Y co-doped anatase TiO2 nanoparticles. J Solid State Chem 2013;199:212-23. https://doi.org/10.1016/j.jssc.2012.12.018
  11. Cui C, Liu H, Li Y, Sun J, Wang R, Liu S, et al. Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials. Mater Lett 2005;59:3144-8. https://doi.org/10.1016/j.matlet.2005.05.037
  12. Madhan Kumar A, Rajendran N. Electrochemical aspects and in vitro biocompatibility of polypyrrole/TiO2 ceramic nanocomposite coatings on 316L SS for orthopedic implants. Ceram Int 2013;39:5639-50. https://doi.org/10.1016/j.ceramint.2012.12.080
  13. Poma AM, Di Bucchianico S, Galano A, Santucci S. Biocompatibility evaluation of TiO2 nanoparticles and thin films by means of the murine macrophages RAW 264.7 cell line. J Biotechnol 2010;150 Suppl:466.
  14. Nejand BA, Sanjabi S, Ahmadi V. Sputter deposition of high transparent TiO2-xNx/TiO2/ZnO layers on glass for development of photocatalytic self-cleaning application. Appl Surf Sci 2011;257:10434-42. https://doi.org/10.1016/j.apsusc.2011.06.124
  15. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-8. https://doi.org/10.1038/238037a0
  16. Chun MJ, Shim E, Kho EH, Park KJ, Jung J, Kim JM, et al. Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Angle Orthod 2007;77:483-8. https://doi.org/10.2319/0003-3219(2007)077[0483:SMOOWW]2.0.CO;2
  17. Wang H, Tang B, Li X, Ma Y. Antibacterial properties and corrosion resistance of nitrogen-doped TiO2 coatings on stainless steel. J Mater Sci Technol 2011;27:309-16. https://doi.org/10.1016/S1005-0302(11)60067-4
  18. Choi JY, Kim KH, Choy KC, Oh KT, Kim KN. Photocatalytic antibacterial effect of TiO(2) film formed on Ti and TiAg exposed to Lactobacillus acidophilus. J Biomed Mater Res B Appl Biomater 2007;80:353-9.
  19. Zhou L, Deng J, Zhao Y, Liu W, An L, Chen F. Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation. Mater Chem Phys 2009;117:522-7. https://doi.org/10.1016/j.matchemphys.2009.06.036
  20. Barrocas B, Monteiro OC, Jorge MEM, Serio S. Photocatalytic activity and reusability study of nanocrystalline TiO2 films prepared by sputtering technique. Appl Surf Sci 2013;264:111-6. https://doi.org/10.1016/j.apsusc.2012.09.136
  21. Lee H, Park SH, Kim SJ, Kim BH, Yoon HS, Kim JS, et al. The effect of combined processes for advanced oxidation of organic dye using CVD TiO2 film photo-catalysts. Prog Org Coat 2012;74:758-63. https://doi.org/10.1016/j.porgcoat.2011.09.024
  22. Tavares CJ, Marques SM, Rebouta L, Lanceros-Mendez S, Sencadas V, Costa CM, et al. PVD-Grown photocatalytic TiO2 thin films on PVDF substrates for sensors and actuators applications. Thin Solid Film 2008;517:1161-6. https://doi.org/10.1016/j.tsf.2008.06.024
  23. Balasubramanian K, Han XF, Guenther KH. Comparative study of titanium dioxide thin films produced by electron-beam evaporation and by reactive low-voltage ion plating. Appl Opt 1993;32:5594-600. https://doi.org/10.1364/AO.32.005594
  24. Akpan UG, Hameed BH. The advancements in solgel method of doped-TiO2 photocatalysts. Appl Catal A Gen 2010;375:1-11. https://doi.org/10.1016/j.apcata.2009.12.023
  25. Fu T, Wen CS, Lu J, Zhou YM, Ma SG, Dong BH, et al. Sol-gel derived TiO2 coating on plasma nitrided 316L stainless steel. Vacuum 2012;86:1402-7. https://doi.org/10.1016/j.vacuum.2012.01.017
  26. Nakaruk A, Lin CY, Perera DS, Sorrell CC. Effect of annealing temperature on titania thin films prepared by spin coating. J Sol-Gel Sci Technol 2010;55:328-34. https://doi.org/10.1007/s10971-010-2257-y
  27. Pomoni K, Vomvas A, Trapalis C. Electrical conductivity and photoconductivity studies of TiO2 sol-gel thin films and the effect of N-doping. J Non-Cryst Solid 2008;354:4448-57. https://doi.org/10.1016/j.jnoncrysol.2008.06.069
  28. Cao S, Liu B, Fan L, Yue Z, Liu B, Cao B. Highly antibacterial activity of N-doped TiO2 thin films coated on stainless steel brackets under visible light irradiation. Appl Surf Sci 2014;309:119-27. https://doi.org/10.1016/j.apsusc.2014.04.198
  29. Singh P, Kaur D. Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering. Phys B Condens Matter 2010;405:1258-66. https://doi.org/10.1016/j.physb.2009.11.061
  30. Hou YQ, Zhuang DM, Zhang G, Zhao M, Wu MS. Influence of annealing temperature on the properties of titanium oxide thin film. Appl Surf Sci 2003;218:98-106. https://doi.org/10.1016/S0169-4332(03)00569-5
  31. Kaplan R, Erjavec B, Drazic G, Grdadolnik J, Pintar A. Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl Catal B Environ 2016;181:465-74. https://doi.org/10.1016/j.apcatb.2015.08.027
  32. Chen Y, Dionysiou DD. Correlation of structural properties and film thickness to photocatalytic activity of thick TiO2 films coated on stainless steel. Appl Catal B Environ 2006;69:24-33. https://doi.org/10.1016/j.apcatb.2006.05.002
  33. Wang X, Hou X, Luan W, Li D, Yao K. The antibacterial and hydrophilic properties of silver-doped TiO2 thin films using sol-gel method. Appl Surf Sci 2012;258:8241-6. https://doi.org/10.1016/j.apsusc.2012.05.028
  34. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 1999;65:4094-8.
  35. Chen Y, Wong RW, Seneviratne CJ, Hagg U, McGrath C, Samaranayake LP, et al. The antimicrobial efficacy of Fructus mume extract on orthodontic bracket: a monospecies-biofilm model study in vitro. Arch Oral Biol 2011;56:16-21. https://doi.org/10.1016/j.archoralbio.2010.08.006
  36. Karunakaran C, Rajeswari V, Gomathisankar P. Enhanced photocatalytic and antibacterial activities of sol-gel synthesized ZnO and Ag-ZnO. Mater Sci Semicond Process 2011;14:133-8. https://doi.org/10.1016/j.mssp.2011.01.017
  37. Sayilkan F, Asilturk M, Kiraz N, Burunkaya E, Arpac E, Sayilkan H. Photocatalytic antibacterial performance of Sn(4+)-doped TiO(2) thin films on glass substrate. J Hazard Mater 2009;162:1309-16. https://doi.org/10.1016/j.jhazmat.2008.06.043
  38. Ozyildiz F, Guden M, Uzel A, Karaboz I, Akil O, Bulut H. Antimicrobial activity of TiO2-coated orthodontic ceramic brackets against Streptococcus mutans and Candida albicans. Biotechnol Bioprocess Eng 2010;15:680-5. https://doi.org/10.1007/s12257-009-3005-4
  39. Shah AG, Shetty PC, Ramachandra CS, Bhat NS, Laxmikanth SM. In vitro assessment of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiadherent and antibacterial properties against Lactobacillus acidophilus. Angle Orthod 2011;81:1028-35. https://doi.org/10.2319/021111-101.1
  40. Calderon-Moreno JM, Preda S, Predoana L, Zaharescu M, Anastasescu M, Nicolescu M, et al. Effect of polyethylene glycol on porous transparent TiO2 films prepared by sol-gel method. Ceram Int 2014;40:2209-20. https://doi.org/10.1016/j.ceramint.2013.07.139
  41. Malengreaux CM, Timmermans A, Pirard SL, Lambert SD, Pirard JP, Poelman D, et al. Optimized deposition of TiO2 thin films produced by a non-aqueous sol-gel method and quantification of their photocatalytic activity. Chem Eng J 2012;195-196:347-58. https://doi.org/10.1016/j.cej.2012.04.076
  42. Sharma SK, Vishwas M, Rao KN, Mohan S, Reddy DS, Gowda KVA. Structural and optical investigations of TiO2 films deposited on transparent substrates by sol-gel technique. J Alloy Compd 2009;471:244-7. https://doi.org/10.1016/j.jallcom.2008.03.058
  43. Mechiakh R, Meriche F, Kremer R, Bensaha R, Boudine B, Boudrioua A. TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties. Opt Mater 2007;30:645-51. https://doi.org/10.1016/j.optmat.2007.02.047
  44. Sasani Ghamsari M, Bahramian AR. High transparent sol-gel derived nanostructured TiO2 thin film. Mater Lett 2008;62:361-4. https://doi.org/10.1016/j.matlet.2007.05.053

Cited by

  1. Surface Hydrophilicity and Antifungal Properties of TiO 2 Films Coated on a Co-Cr Substrate vol.2017, pp.None, 2016, https://doi.org/10.1155/2017/2054723
  2. Compositional differences in multi-species biofilms formed on various orthodontic adhesives vol.39, pp.5, 2016, https://doi.org/10.1093/ejo/cjw089
  3. Long-term antimicrobial assessment of orthodontic brackets coated with nitrogen-doped titanium dioxide against Streptococcus mutans vol.19, pp.1, 2016, https://doi.org/10.1186/s40510-018-0236-y
  4. Mesoporous Titanium Dioxide: Synthesis and Applications in Photocatalysis, Energy and Biology vol.11, pp.10, 2016, https://doi.org/10.3390/ma11101910
  5. Synergistic effects of titanium dioxide and cellulose on the properties of glassionomer cement vol.38, pp.1, 2016, https://doi.org/10.4012/dmj.2018-001
  6. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment vol.13, pp.2, 2016, https://doi.org/10.1002/wnan.1669