DOI QR코드

DOI QR Code

Water-soluble microencapsulation using gum Arabic and skim milk enhances viability and efficacy of Pediococcus acidilactici probiotic strains for application in broiler chickens

  • Ratchnida Kamwa (Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University) ;
  • Benjamas Khurajog (Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University) ;
  • Nongnuj Muangsin (Department of Chemistry, Faculty of Science, Chulalongkorn University) ;
  • Pawiya Pupa (Department of Biology, Faculty of Science, Chulalongkorn University) ;
  • David J Hampson (School of Veterinary Medicine, Murdoch University) ;
  • Nuvee Prapasarakul (Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University)
  • Received : 2023.10.25
  • Accepted : 2024.02.10
  • Published : 2024.08.01

Abstract

Objective: This study aimed to develop and evaluate the effectiveness of a water-soluble microencapsulation method for probiotic strains using gum Arabic (GA) and skim milk (SKM) over a three-month storage period following processing. Methods: Four strains of Pediococcus acidilactici (BYF26, BYF20, BF9, and BF14) that were typical lactic acid bacteria (LAB) isolated from the chicken gut were mixed with different ratios of GA and SKM as coating agents before spray drying at an inlet temperature 140℃. After processing, the survivability and probiotic qualities of the strains were assessed from two weeks to three months of storage at varied temperatures, and de-encapsulation was performed to confirm the soluble properties. Finally, the antibacterial activity of the probiotics was assessed under simulated gastrointestinal conditions. Results: As shown by scanning electron microscopy, spray-drying produced a spherical, white-yellow powder. The encapsulation efficacy (percent) was greatest for a coating containing a combination of 30% gum Arabic: 30% skim milk (w/v) (GA:SKM30) compared to lower concentrations of the two ingredients (p<0.05). Coating with GA:SKM30 (w/v) significantly enhanced (p<0.05) BYF26 survival under simulated gastrointestinal conditions (pH 2.5 to 3) and maintained higher survival rates compared to non-encapsulated cells under an artificial intestinal juices condition of pH 6. De-encapsulation tests indicated that the encapsulated powder dissolved in water while keeping viable cell counts within the effective range of 106 for 6 hours. In addition, following three months storage at 4℃, microencapsulation of BYF26 in GA:SKM30 maintained both the number of viable cells (p<0.05) and the preparation's antibacterial efficacy against pathogenic bacteria, specifically strains of Salmonella. Conclusion: Our prototype water-soluble probiotic microencapsulation GA:SKM30 effectively maintains LAB characteristics and survival rates, demonstrating its potential for use in preserving probiotic strains that can be used in chickens and potentially in other livestock.

Keywords

Acknowledgement

The present scientific research was financially supported by 2022-Fundamental Fund, Thailand Science Research and Innovation (TSRI), Chulalongkorn University (FOOD66310012) and ThaiFoods Group public company limited, Bangkok, Thailand and 90th Anniversary of Chulalongkorn University Scholarship (Ratchadaphiseksomphot Endowment Fund), Chulalongkorn University, Bangkok, Thailand.

References

  1. Antunes Pc, Reu C, Sousa JC, Peixe Ls, Pestana N. Incidence of Salmonella from poultry products and their susceptibility to antimicrobial agents. Int J Food Microbiol 2003;82:97-103. https://doi.org/10.1016/S0168-1605(02)00251-9 
  2. Hill C, Guarner F, Reid G, et al. Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014;11:506-14. https://doi.org/10.1038/nrgastro.2014.66 
  3. Mountzouris KC, Balaskas C, Xanthakos I, Tzivinikou A, Fegeros K. Effects of a multi-species probiotic on biomarkers of competitive exclusion efficacy in broilers challenged with Salmonella enteritidis. Br Poult Sci 2009;50:467-78. https://doi.org/10.1080/00071660903110935 
  4. Villagran-de la Mora Z, Nuno K, Vazquez-Paulino O, et al. Effect of a synbiotic mix on intestinal structural changes, and Salmonella Typhimurium and Clostridium perfringens colonization in broiler chickens. Animals (Basel) 2019;9:777. https://doi.org/10.3390/ani9100777 
  5. Attia YA, Basiouni S, Abdulsalam NM, et al. Alternative to antibiotic growth promoters: beneficial effects of Saccharomyces cerevisiae and/or Lactobacillus acidophilus supplementation on the growth performance and sustainability of broilers' production. Front Vet Sci 2023;10:1259426. https://doi.org/10.3389/fvets.2023.1259426 
  6. McClements DJ. Nanoparticle- and microparticle-based delivery systems: encapsulation, protection and release of active compounds. 1st ed. Boca Raton, FL, USA: CRC press; 2014. 
  7. Frakolaki G, Katsouli M, Giannou V, Tzia C. Novel encapsulation approach for Bifidobacterium subsp. lactis (BB-12) viability enhancement through its incorporation into a double emulsion prior to the extrusion process. LWT 2020;130:109671. https://doi.org/10.1016/j.lwt.2020.109671 
  8. Rajam R, Anandharamakrishnan C. Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT-Food Sci Technol 2015;60:773-80. https://doi.org/10.1016/j.lwt.2014.09.062 
  9. Archacka M, Bialas W, Dembczynski R, et al. Method of preservation and type of protective agent strongly influence probiotic properties of Lactococcus lactis: A complete process of probiotic preparation manufacture and use. Food Chem 2019;274:733-42. https://doi.org/10.1016/j.foodchem.2018.09.033 
  10. Saeed F, Bader-Ul-Ain H, Afzaal M, Ahmad N, Abbas M, Suleria HAR. Role of encapsulation in food systems: a review. In: Verma DK, Goya MR, Suleria HAR. 1st ed. Nanotechnology and nanomaterial applications in food, health, and biomedical sciences. New York, USA: Apple Academic Press; 2019. pp. 233-47. https://doi.org/10.1201/9780429425660-6 
  11. Timilsena YP, Haque MA, Adhikari B. Encapsulation in the food industry: a brief historical overview to recent developments. Food Nutr Sci 2020;11:481-508. https://doi.org/10.4236/fns.2020.116035 
  12. Kailasapathy K. Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 2002;3:39-48. 
  13. Lee SH, Lillehoj HS, Dalloul RA, Park DW, Hong YH, Lin JJ. Influence of Pediococcus-based probiotic on coccidiosis in broiler chickens. Poult Sci 2007;86:63-6. https://doi.org/10.1093/ps/86.1.63 
  14. Khurajog B, Disastra Y, Lawwyne LD, et al. Selection and evaluation of lactic acid bacteria from chicken feces in Thailand as potential probiotics. PeerJ 2023;11:e16637. https://doi.org/10.7717/peerj.16637 
  15. Tao T, Ding Z, Hou D, et al. Influence of polysaccharide as co-encapsulant on powder characteristics, survival and viability of microencapsulated Lactobacillus paracasei Lpc-37 by spray drying. J Food Eng 2019;252:10-7. https://doi.org/10.1016/j.jfoodeng.2019.02.009 
  16. Gul O. Microencapsulation of Lactobacillus casei Shirota by spray drying using different combinations of wall materials and application for probiotic dairy dessert. J Food Process Preserv 2017;41:e13198. https://doi.org/10.1111/jfpp.13198 
  17. Pupa P, Apiwatsiri P, Sirichokchatchawan W, et al. The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Sci Rep 2021;11:13753. https://doi.org/10.1038/s41598-021-93263-z 
  18. Corcoran BM, Ross RP, Fitzgerald GF, Stanton C. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 2004;96:1024-39. https://doi.org/10.1111/j.1365-2672.2004.02219.x 
  19. Zaeim D, Sarabi-Jamab M, Ghorani B, Kadkhodaee R, Tromp RH. Electrospray-assisted drying of live probiotics in acacia gum microparticles matrix. Carbohydr Polym 2018;183:183-91. https://doi.org/10.1016/j.carbpol.2017.12.001 
  20. Rajam R, Subramanian P. Encapsulation of probiotics: past, present and future. Beni Suef Univ J Basic Appl Sci 2022;11:46. https://doi.org/10.1186/s43088-022-00228-w 
  21. Fritzen-Freire CB, Prudencio ES, Amboni RD, Pinto SS, Negrao-Murakami AN, Murakami FS. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Res Int 2012;45:306-12. https://doi.org/10.1016/j.foodres.2011.09.020 
  22. Eckert C, Serpa VG, dos Santos ACF, et al. Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT-Food Sci Technol 2017;82:176-83. https://doi.org/10.1016/j.lwt.2017.04.045 
  23. Lone A, Mottawea W, Ait Chait Y, Hammami R. Dual inhibition of Salmonella enterica and Clostridium perfringens by new probiotic candidates isolated from chicken intestinal mucosa. Microorganisms 2021;9:166. https://doi.org/10.3390/microorganisms9010166 
  24. Miri S, Hassan H, Esmail GA, et al. A two bacteriocinogenic Ligilactobacillus strain association inhibits growth, adhesion, and invasion of Salmonella in a simulated chicken gut environment. Probiotics Antimicrob Proteins 2023 Aug 30 [ePub]. https://doi.org/10.1007/s12602-023-10148-5 
  25. Liu H, Gong J, Chabot D, et al. Incorporation of polysaccharides into sodium caseinate-low melting point fat microparticles improves probiotic bacterial survival during simulated gastrointestinal digestion and storage. Food Hydrocoll 2016;54:328-37. https://doi.org/10.1016/j.foodhyd.2015.10.016 
  26. Zhao Y, Jiang C, Yang L, Liu N. Adsorption of Lactobacillus acidophilus on attapulgite: kinetics and thermodynamics and survival in simulated gastrointestinal conditions. LWT 2017;78:189-97. https://doi.org/10.1016/j.lwt.2016.12.022 
  27. Ayala DI, Cook PW, Franco JG, et al. A systematic approach to identify and characterize the effectiveness and safety of novel probiotic strains to control foodborne pathogens. Front Microbiol 2019;10:1108. https://doi.org/10.3389/fmicb.2019.01108 
  28. Sirichokchatchawan W, Tanasupawat S, Niyomtham W, Prapasarakul N. Identification and antimicrobial susceptibility of lactic acid bacteria from fecal samples of indigenous and commercial pigs. Wetchasan Sattawaphaet 2017;47:329-38. https://doi.org/10.56808/2985-1130.2841 
  29. Reddy KBPK, Madhu AN, Prapulla SG. Comparative survival and evaluation of functional probiotic properties of spray-dried lactic acid bacteria. Int J Dairy Technol 2009;62:240-8. https://doi.org/10.1111/j.1471-0307.2009.00480.x 
  30. Desmond C, Ross RP, O'callaghan E, Fitzgerald G, Stanton C. Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J Appl Microbiol 2002;93:1003-11. https://doi.org/10.1046/j.1365-2672.2002.01782.x 
  31. Gardiner G, O'sullivan E, Kelly J, et al. Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 2000;66:2605-12. https://doi.org/10.1128/AEM.66.6.2605-2612.2000 
  32. Fang Z, Bhandari B. Encapsulation of polyphenols-a review. Trends Food Sci Technol 2010;21:510-23. https://doi.org/10.1016/j.tifs.2010.08.003 
  33. Rodriguez-Restrepo YA, Giraldo GI, Rodriguez-Barona S. Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: application to microencapsulation of Bifidobacterium animalis subsp. lactis. J Food Process Eng 2017;40:e12557. https://doi.org/10.1111/jfpe.12557 
  34. Udabage P, Puvanenthiran A, Yoo JA, Versteeg C, Augustin MA. Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment. J Dairy Res 2012;79:76-83. https://doi.org/10.1017/S0022029911000793 
  35. Palamidi I, Fegeros K, Mohnl M, et al. Probiotic form effects on growth performance, digestive function, and immune related biomarkers in broilers. Poult Sci 2016;95:1598-608. https://doi.org/10.3382/ps/pew052 
  36. Barajas-Alvarez P, Gonzalez-Avila M, Espinosa-Andrews H. Recent advances in probiotic encapsulation to improve viability under storage and gastrointestinal conditions and their impact on functional food formulation. Food Rev Int 2023;39:992-1013. https://doi.org/10.1080/87559129.2021.1928691 
  37. Torp AM, Bahl MI, Boisen A, Licht TR. Optimizing oral delivery of next generation probiotics. Trends Food Sci Technol 2022;119:101-9. https://doi.org/10.1016/j.tifs.2021.11.034 
  38. Oliveira AC, Moretti TS, Boschini C, Baliero JCC, Freitas O, Favaro-Trindade CS. Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. J Microencapsul 2007;24:685-93. https://doi.org/10.1080/02652040701532908 
  39. Broeckx G, Vandenheuvel D, Henkens T, et al. Enhancing the viability of Lactobacillus rhamnosus GG after spray drying and during storage. Int J Pharm 2017;534:35-41. https://doi.org/10.1016/j.ijpharm.2017.09.075 
  40. Leylak C, Ozdemir KS, Gurakan GC, Ogel ZB. Optimisation of spray drying parameters for Lactobacillus acidophilus encapsulation in whey and gum Arabic: its application in yoghurt. Int Dairy J 2021;112:104865. https://doi.org/10.1016/j.idairyj.2020.104865 
  41. Servin AL, Coconnier MH. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 2003;17:741-54. https://doi.org/10.1016/s1521-6918(03)00052-0 
  42. Seo HJ, Kang SS. Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella Typhimurium. Food Control 2020;117:107361. https://doi.org/10.1016/j.foodcont.2020.107361 
  43. Navidshad B, Liang JB, Jahromi MF. Correlation coefficients between different methods of expressing bacterial quantification using real time PCR. Int J Mol Sci 2012;13:2119-32. https://doi.org/10.3390/ijms13022119