• Title/Summary/Keyword: Anti-tumor immunity

Search Result 122, Processing Time 0.024 seconds

The CD28-B7 Family in Anti-Tumor Immunity: Emerging Concepts in Cancer Immunotherapy

  • Leung, Joanne;Suh, Woong-Kyung
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.265-276
    • /
    • 2014
  • The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy.

Marked Expansion of CD11c+CD8+ T-Cells in Melanoma-bearing Mice Induced by Anti-4-1BB Monoclonal Antibody

  • Ju, Seong-A;Park, Sang-Min;Lee, Sang-Chul;Kwon, Byoung S.;Kim, Byung-Sam
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.132-138
    • /
    • 2007
  • 4-1BB (CD137), a member of the tumor necrosis factor receptor superfamily, is expressed on activated T-cells, and 4-1BB signaling due to interaction with 4-1BB ligand or ligation with anti-4-1BB monoclonal antibody (mAb) costimulates T cells. It has been shown that administration of anti-4-1BB mAb induces anti-tumor immunity in mice, but the nature of the cellular subsets responsible for this immunity is uncertain. In this study we found that anti-4-1BB mAb administration to B16F10 melanoma-bearing mice induced marked expansion of $CD11c^+CD8^+$ T-cells in parallel with suppression of pulmonary tumors. The mAb-treated mice produced higher levels of $IFN-{\gamma}$ in their tumor tissues, spleen and lymph nodes than mice exposed to control antibody. When the $CD11c^+CD8^+$ T-cells were purified and re-stimulated in vitro, they produced high levels of the Th1 cytokines, $IFN-{\gamma}$ and IL-2, but low levels of the Th2 cytokines, IL-4 and IL-10. Furthermore, they expressed high levels of 4-1BB and CD107a, a marker of activated cytotoxic T-lymphocytes. Our results suggest that $CD11c^+CD8^+$ T-cells play a role in the anti-tumor immunity induced by anti-4-1BB mAb.

Effect of Lipofectin on Antigen-presenting Function and Anti-tumor Activity of Dendritic Cells (수지상세포의 항원제시 능력 및 항암활성에 미치는 Lipofectin의 영향)

  • Noh, Young-Woock;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.102-110
    • /
    • 2006
  • Background: Dendritic cells (DC) are professional antigen-presenting cells in the immune system and can induce T cell response against virus infections, microbial pathogens, and tumors. Therefore, immunization using DC loaded with tumor-associated antigens (TAAs) is a powerful method of inducing anti-tumor immunity. For induction of effective anti-tumor immunity, antigens should be efficiently introduced into DC and presented on MHC class I molecules at high levels to activate antigen-specific $CD8^+$ T cells. We have been exploring methods for loading exogenous antigens into APC with high efficiency of Ag presentation. In this study, we tested the effect of the cationic liposome (Lipofectin) for transferring and loading exogenous model antigen (OVA protein) into BM-DC. Methods: Bone marrow-derived DC (EM-DC) were incubated with OVA-Lipofectin complexes and then co-cultured with B3Z cells. B3Z activation, which is expressed as the amount of ${\beta}$-galactosidase induced by TCR stimulation, was determined by an enzymatic assay using ${\beta}$-gal assay system. C57BL/6 mice were immunized with OVA-pulsed DC to monitor the in vivo vaccination effect. After vaccination, mice were inoculated with EG7-OVA tumor cells. Results: BM-DC pulsed with OVA-Lipofectin complexes showed more efficient presentation of OVA-peptide on MHC class I molecules than soluble OVA-pulsed DC. OVA-Lipofectin complexes-pulsed DC pretreated with an inhibitor of MHC class I-mediated antigen presentation, brefeldin A, showed reduced ability in presenting OVA peptide on their surface MHC class I molecules. Finally, immunization of OVA-Lipofectin complexes-pulsed DC protected mice against subsequent tumor challenge. Conclusion: Our data provide evidence that antigen-loading into DC using Lipofectin can promote MHC class I- restricted antigen presentation. Therefore, antigen-loading into DC using Lipofectin can be one of several useful tools for achieving efficient induction of antigen-specific immunity in DC-based immunotherapy.

Anti-tumor and immuno-stimulating activity of fungal polysaccharides

  • Lee, Jae-Hoon
    • The Microorganisms and Industry
    • /
    • v.20 no.3
    • /
    • pp.14-21
    • /
    • 1994
  • Low molecular weight molecules and high molecular weight substances were found to have anti-tumor and immuno-modulating activity. Previously polysaccharides have been received much attention because of adhesives, food additives or animal foods (Whistler et al., 1976). In effort of developing new anti-tumor substances with low toxicity, numerous polysaccharides from yeast, algae, bacteria, higher plants and especially fungi have been investigated for anti-tumor and immuno-modulating activities. Thus the high molecular weight molecule was reported to have anti-tumor activity through host mediated immunity. In this brief article, attention will be paid to polysaccharides which is especially fungal origin.

  • PDF

CM1 Ligation Induces Apoptosis via Fas-FasL Interaction in Ramos Cells, but via Down-regulation of Bcl-2 and Subsequent Decrease of Mitochondrial Membrane Potential in Raji Cells

  • Lee, Young-Sun;Kim, Yeong-Seok;Kim, Dae-Jin;Hur, Dae-Young;Kang, Jae-Seung;Kim, Young-In;Hahm, Eun-Sil;Cho, Dae-Ho;Hwang, Young-Il;Lee, Wang-Jae
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.59-66
    • /
    • 2006
  • Background: CM1 (Centrocyte/-blast Marker I) defined by a mAb developed against concanavalin-A activated PBMC, is expressed specifically on a subpopulation of centroblasts and centrocytes of human germinal center (GC) B cells. Burkitt lymphoma (BL) is a tumor consisting of tumor cells with the characteristics of GC B cell. Previously we reported that CM1 ligation with anti-CM1 mAb induced apoptosis in Ramos $(IgM^{high})$ and Raji $(IgM^{low})$ cells. Methods & Results: In the present study, we observed that CM1 ligation with anti-CM1 mAb induced Fas ligand and Fas expression in Ramos cells, but not in Raji cells. Furthermore, anti-Fas blocking antibody, ZB4, blocked CM1-mediated apoptosis effectively in Ramos cells, but not in Raji cells. Increased mitochondrial membrane permeabilization, which was measured by $DiOC_6$, was observed only in Raji cells. In contrast to no significant change of Bax known as pro-apoptotic protein, anti-apoptotic protein Bcl-2 was significantly decreased in Raji cells. In addition, we observed that CM1 ligation increased release of mitochondrial cytochrome c and upregulated caspase-9 activity in Raji cells. Conclusion: These results suggest that apoptosis induced by CM1-ligation is mediated by Fas-Fas ligand interaction in Ramos cells, whereas apoptosis is mediated by down-regulation of Bcl-2 and subsequent decrease of mitochondrial membrane potential in Raji cells.

Enhancement of Anti-tumor Immunity by Administration of Macrolepiota procera Extracts (큰갓버섯 추출물의 종양면역 증진 효과)

  • Han, Kyung-Hoon;Kim, Doh-Hee;Song, Kwan-Yong;Lee, Kye-Heui;Kang, Tae-Bong;Yoon, Taek-Joon
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • To examine the potentiation of Macrolepiota procera extracts (MPE-4) to act as adjuvant enhancing the tumor specific anti-tumor immune response, tumor vaccine prepared by boiling (HK vaccine) admixed with MPE-4 and immunized in mice. Vaccination of mice with HK vaccine in combination with MPE-4 resulted in higher inhibition in tumor metastasis compared with the mice of HK vaccine alone treatment against live syngeneic tumor cell challenge. The splenocytes from mice immunized HK vaccine mixed with MPE-4 was able to elicit a stronger cytotoxic T lymphocyte (CTL) response as compared with HK vaccine alone. In addition, the splenocytes from MPE-4 admixed HK vaccine immunized mice secreted a higher concentration of Th1 type cytokine such as IFN-${\gamma}$, and GM-CSF. Furthermore, the adoptive transfer of splenocytes from mice immunized HK vaccine and MPE-4 led to a more robust anti-tumour response than the HK vaccine alone. Overall, these results indicate that MPE-4 is a good candidate adjuvant of anti-tumor immune response.

Dendritic Cell (DC) Vaccine in Mouse Lung Cancer Minimal Residual Model: Comparison of Monocyte-derived DC vs. Hematopoietic Stem Cell Derived-DC

  • Baek, Soyoung;Lee, Seog Jae;Kim, Myoung Joo;Lee, Hyunah
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.269-276
    • /
    • 2012
  • The anti-tumor effect of monocyte-derived DC (MoDC) vaccine was studied in lung cancer model with feasible but weak Ag-specific immune response and incomplete blocking of tumor growth. To overcome this limitation, the hematopoietic stem cell-derived DC (SDC) was cultured and the anti-tumor effect of MoDC & SDC was compared in mouse lung cancer minimal residual model (MRD). Therapeutic DCs were cultured from either $CD34^+$ hematopoietic stem cells with GM-CSF, SCF and IL-4 for 14 days (SDC) or monocytes with GM-CSF and IL-4 for 7 days (MoDC). DCs were injected twice by one week interval into the peritoneum of mice that are inoculated with Lewis Lung Carcinoma cells (LLC) one day before the DC injection. Anti-tumor responses and the immune modulation were observed 3 weeks after the final DC injection. CD11c expression, IL-12 and TGF-${\beta}$ secretion were higher in SDC but CCR7 expression, IFN-${\gamma}$ and IL-10 secretion were higher in MoDC. The proportion of $CD11c^+CD8a^+$ cells was similar in both DC cultures. Although both DC reduced the tumor burden, histological anti-tumor effect and the frequencies of IFN-${\gamma}$ secreting $CD8^+$ T cells were higher in SDC treated group than in MoDC. Conclusively, although both MoDC and SDC can induce the anti-tumor immunity, SDC may be better module as anti-tumor vaccine than MoDC in mouse lung cancer.

Dendritic Cell Based Cancer Immunotherapy: in vivo Study with Mouse Renal Cell Carcinoma Model (수지상세포를 이용한 항암 면역 치료: 생쥐 신장암 모델을 이용한 연구)

  • Lee, Hyunah;Choi, Kwang-Min;Baek, Soyoung;Lee, Hong-Ghi;Jung, Chul-Won
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.44-52
    • /
    • 2004
  • Background: As a potent antigen presenting cell and a powerful inducer of antigen specific immunity, dendritic cells (DCs) are being considered as a promising anti-tumor therapeutic module. The expected therapeutic effect of DCs in renal cell carcinoma was tested in the mouse model. Established late-stage tumor therapeutic (E-T) and minimal residual disease (MRD) model was considered in the in vivo experiments. Methods: Syngeneic renal cell carcinoma cells (RENCA) were inoculated either subcutaneously (E-T) or intravenously (MRD) into the Balb/c mouse. Tumor cell lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started 3 week (E-T model) or one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, the tumor growth and the systemic immunity were observed. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with RENCA cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor growth (E-T model) or formation (MRD model) was suppressed in pulsed-DC treated group. RENCA specific lymphocyte proliferation was observed in the RENCA tumor-bearing mice treated with pulsed-DCs. Primary cytotoxic T cell activity against RENCA cells was increased in pulsed-DC treated group. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs in established or minimal residual disease/metastasis state of renal cell carcinoma. Systemic tumor specific immunity including cytotoxic T cell activity was modulated also in pulsed-DC treated group.

Acetate decreases PVR/CD155 expression via PI3K/AKT pathway in cancer cells

  • Tran, Na Ly;Lee, In Kyu;Choi, Jungkyun;Kim, Sang-Heon;Oh, Seung Ja
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.431-436
    • /
    • 2021
  • In recent years, restoring anti-tumor immunity has garnered a growing interest in cancer treatment. As potential therapeutics, immune checkpoint inhibitors have demonstrated benefits in many clinical studies. Although various methods have been applied to suppress immune checkpoints to boost anti-tumor immunity, including the use of immune checkpoint inhibitors, there are still unmet clinical needs to improve the response rate of cancer treatment. Here, we show that acetate can suppress the expression of poliovirus receptor (PVR/CD155), a ligand for immune checkpoint, in colon cancer cells. We demonstrated that acetate treatment could enhance effector responses of CD8+ T cells by decreasing the expression of PVR/CD155 in cancer cells. We also found that acetate could reduce the expression of PVR/CD155 by deactivating the PI3K/AKT pathway. These results demonstrate that acetate-mediated expression of PVR/CD155 in cancer cells might potentiate the anti-tumor immunity in the microenvironment of cancer. Our findings indicate that maintaining particular acetate concentrations could be a complementary strategy in current cancer treatment.

Maturation and migration of dendritic cells upon stimulation with heat-killed tumor cells

  • Kim, Hyo-Jeong;Yoon, Taek-Joon;Lee, Sung-Won;Yun, Dae-Sun;Kim, Ji-Yeon;Shin, Kwang-Soon;Park, Se-Ho;Hong, Seok-Mann
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.215-223
    • /
    • 2012
  • Recently it has been reported that immunization with heat-killed tumor cells (HK vaccine) induces anti-tumor immune responses in mice. To investigate how HKvaccine elicits anti-tumor specific adaptive immunity, we examined the effect of HK vaccination on innate immune cells such as dendritic cells (DCs), which are essential for the generation of adaptive immunity. Upon stimulation with HK vaccine, DCs matured to promote not only the upregulation of co-stimulatory molecules but also secretion of cytokine IL12. Furthermore, HK vaccine-treated DCs migrated more efficiently to draining lymph nodes compared with untreated ones. Taken together, HK vaccine can be useful as an adjuvant to activate DCs for anti-tumor immune responses.