Browse > Article
http://dx.doi.org/10.4110/in.2014.14.6.265

The CD28-B7 Family in Anti-Tumor Immunity: Emerging Concepts in Cancer Immunotherapy  

Leung, Joanne (Institut de Recherches Cliniques de Montreal (IRCM))
Suh, Woong-Kyung (Institut de Recherches Cliniques de Montreal (IRCM))
Publication Information
IMMUNE NETWORK / v.14, no.6, 2014 , pp. 265-276 More about this Journal
Abstract
The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy.
Keywords
B7 family; CD28 family; Co-stimulation; Co-inhibition; Cancer immunotherapy; Immune evasion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ceeraz, S., E. C. Nowak, and R. J. Noelle. 2013. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol. 34: 556-563.   DOI
2 Sharpe, A. H., and G. J. Freeman. 2002. The B7-CD28 superfamily. Nat. Rev. Immunol. 2: 116-126.   DOI   ScienceOn
3 Sakaguchi, S., K. Wing, Y. Onishi, P. Prieto-Martin, and T. Yamaguchi. 2009. Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21: 1105-1111.   DOI
4 Grosso, J. F., and M. N. Jure-Kunkel. 2013. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 13: 5.
5 Yang, Y. F., J. P. Zou, J. Mu, R. Wijesuriya, S. Ono, T. Walunas, J. Bluestone, H. Fujiwara, and T. Hamaoka. 1997. Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res. 57: 4036-4041.
6 Kwon, E. D., A. A. Hurwitz, B. A. Foster, C. Madias, A. L. Feldhaus, N. M. Greenberg, M. B. Burg, and J. P. Allison. 1997. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 94: 8099-8103.   DOI
7 Demaria, S., N. Kawashima, A. M. Yang, M. L. Devitt, J. S. Babb, J. P. Allison, and S. C. Formenti. 2005. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11: 728-734.
8 Hurwitz, A. A., T. F. Yu, D. R. Leach, and J. P. Allison. 1998. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl. Acad. Sci. U. S. A. 95: 10067-10071.   DOI   ScienceOn
9 Mokyr, M. B., T. Kalinichenko, L. Gorelik, and J. A. Bluestone. 1998. Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res. 58: 5301-5304.
10 Waitz, R., S. B. Solomon, E. N. Petre, A. E. Trumble, M. Fasso, L. Norton, and J. P. Allison. 2012. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res. 72: 430-439.   DOI
11 Ribas, A. 2008. Overcoming immunologic tolerance to melanoma: targeting CTLA-4 with tremelimumab (CP-675,206). Oncologist Suppl. 4: 10-15.
12 Phan, G. Q., J. C. Yang, R. M. Sherry, P. Hwu, S. L. Topalian, D. J. Schwartzentruber, N. P. Restifo, L. R. Haworth, C. A. Seipp, L. J. Freezer, K. E. Morton, S. A. Mavroukakis, P. H. Duray, S. M. Steinberg, J. P. Allison, T. A. Davis, and S. A. Rosenberg. 2003. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. U. S. A. 100: 8372-8377.   DOI   ScienceOn
13 Sanderson, K., R. Scotland, P. Lee, D. Liu, S. Groshen, J. Snively, S. Sian, G. Nichol, T. Davis, T. Keler, M. Yellin, and J. Weber. 2005. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol. 23: 741-750.   DOI
14 Hodi, F. S., S. J. O'Day, D. F. McDermott, R. W. Weber, J. A. Sosman, J. B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J. C. Hassel, W. Akerley, A. J. van den Eertwegh, J. Lutzky, P. Lorigan, J. M. Vaubel, G. P. Linette, D. Hogg, C. H. Ottensmeier, C. Lebbe, C. Peschel, I. Quirt, J. I. Clark, J. D. Wolchok, J. S. Weber, J. Tian, M. J. Yellin, G. M. Nichol, A. Hoos, and W. J. Urba. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363: 711-723.   DOI   ScienceOn
15 Ribas, A., R. Kefford, M. A. Marshall, C. J. Punt, J. B. Haanen, M. Marmol, C. Garbe, H. Gogas, J. Schachter, G. Linette, P. Lorigan, K. L. Kendra, M. Maio, U. Trefzer, M. Smylie, G. A. McArthur, B. Dreno, P. D. Nathan, J. Mackiewicz, J. M. Kirkwood, J. Gomez-Navarro, B. Huang, D. Pavlov, and A. Hauschild. 2013. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol. 31: 616-622.   DOI   ScienceOn
16 Larsson, M., E. M. Shankar, K. F. Che, A. Saeidi, R. Ellegard, M. Barathan, V. Velu, and A. Kamarulzaman. 2013. Molecular signatures of T-cell inhibition in HIV-1 infection. Retrovirology 10: 31.   DOI
17 Selby, M. J., J. J. Engelhardt, M. Quigley, K. A. Henning, T. Chen, M. Srinivasan, and A. J. Korman. 2013. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1: 32-42.   DOI
18 Yuan, J., M. Adamow, B. A. Ginsberg, T. S. Rasalan, E. Ritter, H. F. Gallardo, Y. Xu, E. Pogoriler, S. L. Terzulli, D. Kuk, K. S. Panageas, G. Ritter, M. Sznol, R. Halaban, A. A. Jungbluth, J. P. Allison, L. J. Old, J. D. Wolchok, and S. Gnjatic. 2011. Integrated NY-ESO-1 antibody and $CD8^+$ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc. Natl. Acad. Sci. U. S. A. 108: 16723-16728.   DOI
19 Liakou, C. I., A. Kamat, D. N. Tang, H. Chen, J. Sun, P. Troncoso, C. Logothetis, and P. Sharma. 2008. CTLA-4 blockade increases IFNgamma-producing $CD4^+ICOS^{hi}$ cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl. Acad. Sci. U. S. A. 105: 14987-14992.   DOI
20 Pardoll, D. M. 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12: 252-264.   DOI
21 Ahmadzadeh, M., L. A. Johnson, B. Heemskerk, J. R. Wunderlich, M. E. Dudley, D. E. White, and S. A. Rosenberg. 2009. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114: 1537-1544.   DOI
22 Matsuzaki, J., S. Gnjatic, P. Mhawech-Fauceglia, A. Beck, A. Miller, T. Tsuji, C. Eppolito, F. Qian, S. Lele, P. Shrikant, L. J. Old, and K. Odunsi. 2010. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl. Acad. Sci. U. S. A. 107: 7875-7880.   DOI
23 Ghebeh, H., S. Mohammed, A. Al-Omair, A. Qattan, C. Lehe, G. Al-Qudaihi, N. Elkum, M. Alshabanah, A. S. Bin, A. Tulbah, D. Ajarim, T. Al-Tweigeri, and S. Dermime. 2006. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8: 190-198.   DOI
24 Barber, D. L., E. J. Wherry, D. Masopust, B. Zhu, J. P. Allison, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439: 682-687.   DOI   ScienceOn
25 Dong, H., S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen. 2002. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8: 793-800.
26 Iwai, Y., M. Ishida, Y. Tanaka, T. Okazaki, T. Honjo, and N. Minato. 2002. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. U. S. A. 99: 12293-12297.   DOI
27 Rosenwald, A., G. Wright, K. Leroy, X. Yu, P. Gaulard, R. D. Gascoyne, W. C. Chan, T. Zhao, C. Haioun, T. C. Greiner, D. D. Weisenburger, J. C. Lynch, J. Vose, J. O. Armitage, E. B. Smeland, S. Kvaloy, H. Holte, J. Delabie, E. Campo, E. Montserrat, A. Lopez-Guillermo, G. Ott, H. K. Muller-Hermelink, J. M. Connors, R. Braziel, T. M. Grogan, R. I. Fisher, T. P. Miller, M. LeBlanc, M. Chiorazzi, H. Zhao, L. Yang, J. Powell, W. H. Wilson, E. S. Jaffe, R. Simon, R. D. Klausner, and L. M. Staudt. 2003. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J. Exp. Med. 198: 851-862.   DOI
28 Hino, R., K. Kabashima, Y. Kato, H. Yagi, M. Nakamura, T. Honjo, T. Okazaki, and Y. Tokura. 2010. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer 116: 1757-1766.   DOI
29 Muenst, S., A. R. Schaerli, F. Gao, S. Daster, E. Trella, R. A. Droeser, M. G. Muraro, P. Zajac, R. Zanetti, W. E. Gillanders, W. P. Weber, and S. D. Soysal. 2014. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res. Treat. 146: 15-24.   DOI
30 Gao, Q., X. Y. Wang, S. J. Qiu, I. Yamato, M. Sho, Y. Nakajima, J. Zhou, B. Z. Li, Y. H. Shi, Y. S. Xiao, Y. Xu, and J. Fan. 2009. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin. Cancer Res. 15: 971-979.   DOI   ScienceOn
31 Taube, J. M., R. A. Anders, G. D. Young, H. Xu, R. Sharma, T. L. McMiller, S. Chen, A. P. Klein, D. M. Pardoll, S. L. Topalian, and L. Chen. 2012. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4: 127ra37.
32 Zheng, Z., Z. Bu, X. Liu, L. Zhang, Z. Li, A. Wu, X. Wu, X. Cheng, X. Xing, H. Du, X. Wang, Y. Hu, and J. Ji. 2014. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chin. J. Cancer Res. 26: 104-111.
33 Iwai, Y., S. Terawaki, and T. Honjo. 2005. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int. Immunol. 17: 133-144.
34 Harvey, R. D. 2014. Immunologic and clinical effects of targeting PD-1 in lung cancer. Clin. Pharmacol. Ther. 96: 214-223.   DOI
35 Okudaira, K., R. Hokari, Y. Tsuzuki, Y. Okada, S. Komoto, C. Watanabe, C. Kurihara, A. Kawaguchi, S. Nagao, M. Azuma, H. Yagita, and S. Miura. 2009. Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a mouse pancreatic cancer model. Int. J. Oncol. 35: 741-749.
36 Wolchok, J. D., H. Kluger, M. K. Callahan, M. A. Postow, N. A. Rizvi, A. M. Lesokhin, N. H. Segal, C. E. Ariyan, R. A. Gordon, K. Reed, M. M. Burke, A. Caldwell, S. A. Kronenberg, B. U. Agunwamba, X. Zhang, I. Lowy, H. D. Inzunza, W. Feely, C. E. Horak, Q. Hong, A. J. Korman, J. M. Wigginton, A. Gupta, and M. Sznol. 2013. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369: 122-133.   DOI
37 Brahmer, J. R., C. G. Drake, I. Wollner, J. D. Powderly, J. Picus, W. H. Sharfman, E. Stankevich, A. Pons, T. M. Salay, T. L. McMiller, M. M. Gilson, C. Wang, M. Selby, J. M. Taube, R. Anders, L. Chen, A. J. Korman, D. M. Pardoll, I. Lowy, and S. L. Topalian. 2010. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28: 3167-3175.   DOI
38 Hamid, O., C. Robert, A. Daud, F. S. Hodi, W. J. Hwu, R. Kefford, J. D. Wolchok, P. Hersey, R. W. Joseph, J. S. Weber, R. Dronca, T. C. Gangadhar, A. Patnaik, H. Zarour, A. M. Joshua, K. Gergich, J. Elassaiss-Schaap, A. Algazi, C. Mateus, P. Boasberg, P. C. Tumeh, B. Chmielowski, S. W. Ebbinghaus, X. N. Li, S. P. Kang, and A. Ribas. 2013. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369: 134-144.   DOI   ScienceOn
39 Brahmer, J. R., S. S. Tykodi, L. Q. Chow, W. J. Hwu, S. L. Topalian, P. Hwu, C. G. Drake, L. H. Camacho, J. Kauh, K. Odunsi, H. C. Pitot, O. Hamid, S. Bhatia, R. Martins, K. Eaton, S. Chen, T. M. Salay, S. Alaparthy, J. F. Grosso, A. J. Korman, S. M. Parker, S. Agrawal, S. M. Goldberg, D. M. Pardoll, A. Gupta, and J. M. Wigginton. 2012. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366: 2455-2465.   DOI
40 Spranger, S., R. M. Spaapen, Y. Zha, J. Williams, Y. Meng, T. T. Ha, and T. F. Gajewski. 2013. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci. Transl. Med. 5: 200ra116.
41 Gigoux, M., A. Lovato, J. Leconte, J. Leung, N. Sonenberg, and W. K. Suh. 2014. Inducible costimulator facilitates T-dependent B cell activation by augmenting IL-4 translation. Mol. Immunol. 59: 46-54.   DOI
42 McAdam, A. J., R. J. Greenwald, M. A. Levin, T. Chernova, N. Malenkovich, V. Ling, G. J. Freeman, and A. H. Sharpe. 2001. ICOS is critical for CD40-mediated antibody class switching. Nature 409: 102-105.   DOI
43 Parry, R. V., C. A. Rumbley, L. H. Vandenberghe, C. H. June, and J. L. Riley. 2003. CD28 and inducible costimulatory protein Src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase, Bcl-xL, and IL-2 expression in primary human CD4 T lymphocytes. J. Immunol. 171: 166-174.   DOI
44 Gigoux, M., J. Shang, Y. Pak, M. Xu, J. Choe, T. W. Mak, and W. K. Suh. 2009. Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc. Natl. Acad. Sci. U. S. A. 106: 20371-20376.   DOI
45 Rolf, J., K. Fairfax, and M. Turner. 2010. Signaling pathways in T follicular helper cells. J. Immunol. 184: 6563-6568.   DOI
46 Greenwald, R. J., G. J. Freeman, and A. H. Sharpe. 2005. The B7 family revisited. Annu. Rev. Immunol. 23: 515-548.   DOI   ScienceOn
47 Bogunovic, D., D. W. O'Neill, I. Belitskaya-Levy, V. Vacic, Y. L. Yu, S. Adams, F. Darvishian, R. Berman, R. Shapiro, A. C. Pavlick, S. Lonardi, J. Zavadil, I. Osman, and N. Bhardwaj. 2009. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc. Natl. Acad. Sci. U. S. A. 106: 20429-20434.   DOI
48 Tamura, H., K. Dan, K. Tamada, K. Nakamura, Y. Shioi, H. Hyodo, S. D. Wang, H. Dong, L. Chen, and K. Ogata. 2005. Expression of functional B7-H2 and B7.2 costimulatory molecules and their prognostic implications in de novo acute myeloid leukemia. Clin. Cancer Res. 11: 5708-5717.   DOI
49 Sim, G. C., N. Martin-Orozco, L. Jin, Y. Yang, S. Wu, E. Washington, D. Sanders, C. Lacey, Y. Wang, L. Vence, P. Hwu, and L. Radvanyi. 2014. IL-2 therapy promotes suppressive $ICOS^+$ Treg expansion in melanoma patients. J. Clin. Invest. 124: 99-110.   DOI
50 Martin-Orozco, N., Y. Li, Y. Wang, S. Liu, P. Hwu, Y. J. Liu, C. Dong, and L. Radvanyi. 2010. Melanoma cells express ICOS ligand to promote the activation and expansion of T-regulatory cells. Cancer Res. 70: 9581-9590.   DOI
51 Carthon, B. C., J. D. Wolchok, J. Yuan, A. Kamat, D. S. Ng Tang, J. Sun, G. Ku, P. Troncoso, C. J. Logothetis, J. P. Allison, and P. Sharma. 2010. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin. Cancer Res. 16: 2861-2871.   DOI
52 Vonderheide, R. H., P. M. LoRusso, M. Khalil, E. M. Gartner, D. Khaira, D. Soulieres, P. Dorazio, J. A. Trosko, J. Ruter, G. L. Mariani, T. Usari, and S. M. Domchek. 2010. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin. Cancer Res. 16: 3485-3494.   DOI
53 Guedan, S., X. Chen, A. Madar, C. Carpenito, S. E. McGettigan, M. J. Frigault, J. Lee, A. D. Posey, Jr., J. Scholler, N. Scholler, R. Bonneau, and C. H. June. 2014. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124: 1070-1080.   DOI
54 Hashiguchi, M., H. Kobori, P. Ritprajak, Y. Kamimura, H. Kozono, and M. Azuma. 2008. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc. Natl. Acad. Sci. U. S. A. 105: 10495-10500.   DOI
55 Chapoval, A. I., J. Ni, J. S. Lau, R. A. Wilcox, D. B. Flies, D. Liu, H. Dong, G. L. Sica, G. Zhu, K. Tamada, and L. Chen. 2001. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat. Immunol. 2: 269-274.   DOI
56 Collins, M., V. Ling, and B. M. Carreno. 2005. The B7 family of immune-regulatory ligands. Genome Biol. 6: 223.   DOI
57 Suh, W. K., B. U. Gajewska, H. Okada, M. A. Gronski, E. M. Bertram, W. Dawicki, G. S. Duncan, J. Bukczynski, S. Plyte, A. Elia, A. Wakeham, A. Itie, S. Chung, C. J. Da, S. Arya, T. Horan, P. Campbell, K. Gaida, P. S. Ohashi, T. H. Watts, S. K. Yoshinaga, M. R. Bray, M. Jordana, and T. W. Mak. 2003. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat. Immunol. 4: 899-906.   DOI
58 Wang, L., C. C. Fraser, K. Kikly, A. D. Wells, R. Han, A. J. Coyle, L. Chen, and W. W. Hancock. 2005. B7-H3 promotes acute and chronic allograft rejection. Eur. J. Immunol. 35: 428-438.   DOI
59 Prasad, D. V., T. Nguyen, Z. Li, Y. Yang, J. Duong, Y. Wang, and C. Dong. 2004. Murine B7-H3 is a negative regulator of T cells. J. Immunol. 173: 2500-2506.   DOI
60 Loos, M., D. M. Hedderich, H. Friess, and J. Kleeff. 2010. B7-h3 and its role in antitumor immunity. Clin. Dev. Immunol. 2010: 683875.
61 Luo, L., A. I. Chapoval, D. B. Flies, G. Zhu, F. Hirano, S. Wang, J. S. Lau, H. Dong, K. Tamada, A. S. Flies, Y. Liu, and L. Chen. 2004. B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific $CD8^+$ cytolytic T cells. J. Immunol. 173: 5445-5450.   DOI
62 Sun, X., M. Vale, E. Leung, J. R. Kanwar, R. Gupta, and G. W. Krissansen. 2003. Mouse B7-H3 induces antitumor immunity. Gene Ther. 10: 1728-1734.   DOI
63 Loos, M., D. M. Hedderich, M. Ottenhausen, N. A. Giese, M. Laschinger, I. Esposito, J. Kleeff, and H. Friess. 2009. Expression of the costimulatory molecule B7-H3 is associated with prolonged survival in human pancreatic cancer. BMC Cancer 9: 463.   DOI
64 Xu, H., I. Y. Cheung, H. F. Guo, and N. K. Cheung. 2009. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res. 69: 6275-6281.   DOI
65 Wu, C. P., J. T. Jiang, M. Tan, Y. B. Zhu, M. Ji, K. F. Xu, J. M. Zhao, G. B. Zhang, and X. G. Zhang. 2006. Relationship between co-stimulatory molecule B7-H3 expression and gastric carcinoma histology and prognosis. World J. Gastroenterol. 12: 457-459.   DOI
66 Zang, X., R. H. Thompson, H. A. Al-Ahmadie, A. M. Serio, V. E. Reuter, J. A. Eastham, P. T. Scardino, P. Sharma, and J. P. Allison. 2007. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc. Natl. Acad. Sci. U. S. A. 104: 19458-19463.   DOI
67 Sun, J., L. J. Chen, G. B. Zhang, J. T. Jiang, M. Zhu, Y. Tan, H. T. Wang, B. F. Lu, and X. G. Zhang. 2010. Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma. Cancer Immunol. Immunother. 59: 1163-1171.   DOI
68 Choi, I. H., G. Zhu, G. L. Sica, S. E. Strome, J. C. Cheville, J. S. Lau, Y. Zhu, D. B. Flies, K. Tamada, and L. Chen. 2003. Genomic organization and expression analysis of B7-H4, an immune inhibitory molecule of the B7 family. J. Immunol. 171: 4650-4654.   DOI
69 Zang, X., P. Loke, J. Kim, K. Murphy, R. Waitz, and J. P. Allison. 2003. B7x: a widely expressed B7 family member that inhibits T cell activation. Proc. Natl. Acad. Sci. U. S. A. 100: 10388-10392.   DOI   ScienceOn
70 Ou, D., X. Wang, D. L. Metzger, Z. Ao, P. Pozzilli, R. F. James, L. Chen, and G. L. Warnock. 2006. Suppression of human T-cell responses to beta-cells by activation of B7-H4 pathway. Cell Transplant. 15: 399-410.   DOI
71 Cheng, L., J. Jiang, R. Gao, S. Wei, F. Nan, S. Li, and B. Kong. 2009. B7-H4 expression promotes tumorigenesis in ovarian cancer. Int. J. Gynecol. Cancer 19: 1481-1486.   DOI
72 Suh, W. K., S. Wang, G. S. Duncan, Y. Miyazaki, E. Cates, T. Walker, B. U. Gajewska, E. Deenick, W. Dawicki, H. Okada, A. Wakeham, A. Itie, T. H. Watts, P. S. Ohashi, M. Jordana, H. Yoshida, and T. W. Mak. 2006. Generation and characterization of B7-H4/B7S1/B7x-deficient mice. Mol. Cell Biol. 26: 6403-6411.   DOI
73 Zhu, G., M. M. Augustine, T. Azuma, L. Luo, S. Yao, S. Anand, A. C. Rietz, J. Huang, H. Xu, A. S. Flies, S. J. Flies, K. Tamada, M. Colonna, J. M. van Deursen, and L. Chen. 2009. B7-H4-deficient mice display augmented neutrophil-mediated innate immunity. Blood 113: 1759-1767.   DOI
74 Leung, J., and W. K. Suh. 2013. Host B7-H4 regulates antitumor T cell responses through inhibition of myeloid-derived suppressor cells in a 4T1 tumor transplantation model. J. Immunol. 190: 6651-6661.   DOI
75 Salceda, S., T. Tang, M. Kmet, A. Munteanu, M. Ghosh, R. Macina, W. Liu, G. Pilkington, and J. Papkoff. 2005. The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp. Cell Res. 306: 128-141.   DOI   ScienceOn
76 Sedy, J. R., M. Gavrieli, K. G. Potter, M. A. Hurchla, R. C. Lindsley, K. Hildner, S. Scheu, K. Pfeffer, C. F. Ware, T. L. Murphy, and K. M. Murphy. 2005. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat. Immunol. 6: 90-98.   DOI
77 Abadi, Y. M., H. Jeon, K. C. Ohaegbulam, L. Scandiuzzi, K. Ghosh, K. A. Hofmeyer, J. S. Lee, A. Ray, C. Gravekamp, and X. Zang. 2013. Host b7x promotes pulmonary metastasis of breast cancer. J. Immunol. 190: 3806-3814.   DOI   ScienceOn
78 Tringler, B., S. Zhuo, G. Pilkington, K. C. Torkko, M. Singh, M. S. Lucia, D. E. Heinz, J. Papkoff, and K. R. Shroyer. 2005. B7-h4 is highly expressed in ductal and lobular breast cancer. Clin. Cancer Res. 11: 1842-1848.   DOI   ScienceOn
79 Le, H. K., L. Graham, E. Cha, J. K. Morales, M. H. Manjili, and H. D. Bear. 2009. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int. Immunopharmacol. 9: 900-909.   DOI
80 Bignotti, E., R. A. Tassi, S. Calza, A. Ravaggi, C. Romani, E. Rossi, M. Falchetti, F. E. Odicino, S. Pecorelli, and A. D. Santin. 2006. Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol. Oncol. 103: 405-416.   DOI
81 Le, M., I, W. Chen, J. L. Lines, M. Day, J. Li, P. Sergent, R. J. Noelle, and L. Wang. 2014. VISTA Regulates the Development of Protective Antitumor Immunity. Cancer Res. 74: 1933-1944.   DOI
82 Zhao, R., J. M. Chinai, S. Buhl, L. Scandiuzzi, A. Ray, H. Jeon, K. C. Ohaegbulam, K. Ghosh, A. Zhao, M. D. Scharff, and X. Zang. 2013. HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function. Proc. Natl. Acad. Sci. U. S. A. 110: 9879-9884.   DOI
83 Brandt, C. S., M. Baratin, E. C. Yi, J. Kennedy, Z. Gao, B. Fox, B. Haldeman, C. D. Ostrander, T. Kaifu, C. Chabannon, A. Moretta, R. West, W. Xu, E. Vivier, and S. D. Levin. 2009. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 206: 1495-1503.   DOI   ScienceOn
84 Topalian, S. L., F. S. Hodi, J. R. Brahmer, S. N. Gettinger, D. C. Smith, D. F. McDermott, J. D. Powderly, R. D. Carvajal, J. A. Sosman, M. B. Atkins, P. D. Leming, D. R. Spigel, S. J. Antonia, L. Horn, C. G. Drake, D. M. Pardoll, L. Chen, W. H. Sharfman, R. A. Anders, J. M. Taube, T. L. McMiller, H. Xu, A. J. Korman, M. Jure-Kunkel, S. Agrawal, D. McDonald, G. D. Kollia, A. Gupta, J. M. Wigginton, and M. Sznol. 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366: 2443-2454.   DOI
85 van, E. A., A. A. Hurwitz, and J. P. Allison. 1999. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190: 355-366.   DOI   ScienceOn
86 Robert, C., L. Thomas, I. Bondarenko, S. O'Day, J. Weber, C. Garbe, C. Lebbe, J. F. Baurain, A. Testori, J. J. Grob, N. Davidson, J. Richards, M. Maio, A. Hauschild, W. H. Miller, Jr., P. Gascon, M. Lotem, K. Harmankaya, R. Ibrahim, S. Francis, T. T. Chen, R. Humphrey, A. Hoos, and J. D. Wolchok. 2011. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364: 2517-2526.   DOI
87 Keir, M. E., S. C. Liang, I. Guleria, Y. E. Latchman, A. Qipo, L. A. Albacker, M. Koulmanda, G. J. Freeman, M. H. Sayegh, and A. H. Sharpe. 2006. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203: 883-895.   DOI   ScienceOn
88 Steidl, C., S. P. Shah, B. W. Woolcock, L. Rui, M. Kawahara, P. Farinha, N. A. Johnson, Y. Zhao, A. Telenius, S. B. Neriah, A. McPherson, B. Meissner, U. C. Okoye, A. Diepstra, B. A. van den, M. Sun, G. Leung, S. J. Jones, J. M. Connors, D. G. Huntsman, K. J. Savage, L. M. Rimsza, D. E. Horsman, L. M. Staudt, U. Steidl, M. A. Marra, and R. D. Gascoyne. 2011. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471: 377-381.   DOI
89 Liu, X., J. X. Gao, J. Wen, L. Yin, O. Li, T. Zuo, T. F. Gajewski, Y. X. Fu, P. Zheng, and Y. Liu. 2003. B7DC/PDL2 promotes tumor immunity by a PD-1-independent mechanism. J. Exp. Med. 197: 1721-1730.   DOI
90 Tafuri, A., A. Shahinian, F. Bladt, S. K. Yoshinaga, M. Jordana, A. Wakeham, L. M. Boucher, D. Bouchard, V. S. Chan, G. Duncan, B. Odermatt, A. Ho, A. Itie, T. Horan, J. S. Whoriskey, T. Pawson, J. M. Penninger, P. S. Ohashi, and T. W. Mak. 2001. ICOS is essential for effective T-helper-cell responses. Nature 409: 105-109.   DOI
91 Lee, H., J. H. Kim, S. Y. Yang, J. Kong, M. Oh, D. H. Jeong, J. I. Chung, K. B. Bae, J. Y. Shin, K. H. Hong, and I. Choi. 2010. Peripheral blood gene expression of B7 and CD28 family members associated with tumor progression and microscopic lymphovascular invasion in colon cancer patients. J. Cancer Res. Clin. Oncol. 136: 1445-1452.   DOI
92 Fu, T., Q. He, and P. Sharma. 2011. The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy. Cancer Res. 71: 5445-5454.   DOI
93 Leitner, J., C. Klauser, W. F. Pickl, J. Stockl, O. Majdic, A. F. Bardet, D. P. Kreil, C. Dong, T. Yamazaki, G. Zlabinger, K. Pfistershammer, and P. Steinberger. 2009. B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. Eur. J. Immunol. 39: 1754-1764.   DOI
94 Roth, T. J., Y. Sheinin, C. M. Lohse, S. M. Kuntz, X. Frigola, B. A. Inman, A. E. Krambeck, M. E. McKenney, R. J. Karnes, M. L. Blute, J. C. Cheville, T. J. Sebo, and E. D. Kwon. 2007. B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res. 67: 7893-7900.   DOI   ScienceOn
95 Kryczek, I., L. Zou, P. Rodriguez, G. Zhu, S. Wei, P. Mottram, M. Brumlik, P. Cheng, T. Curiel, L. Myers, A. Lackner, X. Alvarez, A. Ochoa, L. Chen, and W. Zou. 2006. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203: 871-881.   DOI   ScienceOn
96 He, C., H. Qiao, H. Jiang, and X. Sun. 2011. The inhibitory role of b7-h4 in antitumor immunity: association with cancer progression and survival. Clin. Dev. Immunol. 2011: 695834.
97 Dangaj, D., E. Lanitis, A. Zhao, S. Joshi, Y. Cheng, R. Sandaltzopoulos, H. J. Ra, G. net-Desnoyers, D. J. Powell, Jr., and N. Scholler. 2013. Novel recombinant human b7-h4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses. Cancer Res. 73: 4820-4829.   DOI
98 Sica, G. L., I. H. Choi, G. Zhu, K. Tamada, S. D. Wang, H. Tamura, A. I. Chapoval, D. B. Flies, J. Bajorath, and L. Chen. 2003. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18: 849-861.   DOI   ScienceOn