Browse > Article
http://dx.doi.org/10.4110/in.2012.12.6.269

Dendritic Cell (DC) Vaccine in Mouse Lung Cancer Minimal Residual Model: Comparison of Monocyte-derived DC vs. Hematopoietic Stem Cell Derived-DC  

Baek, Soyoung (Office of Biomedical Professors, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Lee, Seog Jae (Department of Thoracic & Cardiovascular Surgery, Jeju National University School of Medicine)
Kim, Myoung Joo (Office of Biomedical Professors, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Lee, Hyunah (Office of Biomedical Professors, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Publication Information
IMMUNE NETWORK / v.12, no.6, 2012 , pp. 269-276 More about this Journal
Abstract
The anti-tumor effect of monocyte-derived DC (MoDC) vaccine was studied in lung cancer model with feasible but weak Ag-specific immune response and incomplete blocking of tumor growth. To overcome this limitation, the hematopoietic stem cell-derived DC (SDC) was cultured and the anti-tumor effect of MoDC & SDC was compared in mouse lung cancer minimal residual model (MRD). Therapeutic DCs were cultured from either $CD34^+$ hematopoietic stem cells with GM-CSF, SCF and IL-4 for 14 days (SDC) or monocytes with GM-CSF and IL-4 for 7 days (MoDC). DCs were injected twice by one week interval into the peritoneum of mice that are inoculated with Lewis Lung Carcinoma cells (LLC) one day before the DC injection. Anti-tumor responses and the immune modulation were observed 3 weeks after the final DC injection. CD11c expression, IL-12 and TGF-${\beta}$ secretion were higher in SDC but CCR7 expression, IFN-${\gamma}$ and IL-10 secretion were higher in MoDC. The proportion of $CD11c^+CD8a^+$ cells was similar in both DC cultures. Although both DC reduced the tumor burden, histological anti-tumor effect and the frequencies of IFN-${\gamma}$ secreting $CD8^+$ T cells were higher in SDC treated group than in MoDC. Conclusively, although both MoDC and SDC can induce the anti-tumor immunity, SDC may be better module as anti-tumor vaccine than MoDC in mouse lung cancer.
Keywords
Dendritic cell; Lung cancer; Anti-tumor immunity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Steinman, R. M. 1991. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9: 271-296.   DOI
2 Banchereau, J. and R. M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245-252.   DOI
3 Paglia, P., C. Chiodoni, M. Rodolfo, and M. P. Colombo. 1996. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J. Exp. Med. 183: 317-322.   DOI
4 Palucka, K. and J. Banchereau. 1999. Dendritic cells: a link between innate and adaptive immunity. J. Clin. Immunol. 19:12-25.   DOI
5 Paczesny, S., J. Banchereau, K. M. Wittkowski, G. Saracino, J. Fay, and A. K. Palucka. 2004. Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J. Exp. Med. 199: 1503-1511.   DOI
6 Kim, J. H., Y. Lee, Y. S. Bae, W. S. Kim, K. Kim, H. Y. Im, W. K. Kang, K. Park, H. Y. Choi, H. M. Lee, S. Y. Baek, H. Lee, H. Doh, B. M. Kim, C. Y. Kim, C. Jeon, and C. W. Jung. 2007. Phase I/II study of immunotherapy using autologous tumor lysate-pulsed dendritic cells in patients with metastatic renal cell carcinoma. Clin. Immunol. 125: 257-267.   DOI
7 Baek, S., C. S. Kim, S. B. Kim, Y. M. Kim, S. W. Kwon, Y. Kim, H. Kim, and H. Lee. 2011. Combination therapy of renal cell carcinoma or breast cancer patients with dendritic cell vaccine and IL-2: results from a phase I/II trial. J. Transl. Med. 9: 178.   DOI
8 Ragde, H., W. A. Cavanagh, and B. A. Tjoa. 2004. Dendritic cell based vaccines: progress in immunotherapy studies for prostate cancer. J. Urol. 172: 2532-2538.   DOI
9 Iwashita, Y., K. Tahara, S. Goto, A. Sasaki, S. Kai, M. Seike, C. L. Chen, K. Kawano, and S. Kitano. 2003. A phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer. Cancer Immunol. Immunother. 52: 155-161.
10 Hirschowitz, E. A., T. Foody, R. Kryscio, L. Dickson, J. Sturgill, and J. Yannelli. 2004. Autologous dendritic cell vaccines for non-small-cell lung cancer. J. Clin. Oncol. 22: 2808-2815.   DOI
11 Hege, K. M. and D. P. Carbone. 2003. Lung cancer vaccines and gene therapy. Lung Cancer 41 Suppl 1: S103-113.
12 Fong, L., Y. Hou, A. Rivas, C. Benike, A. Yuen, G. A. Fisher, M. M. Davis, and E. G. Engleman. 2001. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci. U.S.A. 98: 8809-8814.   DOI
13 Parkin, D. M., F. Bray, J. Ferlay, and P. Pisani. 2005. Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108.   DOI
14 Spira, A. and D. S. Ettinger. 2004. Multidisciplinary management of lung cancer. N. Engl. J. Med. 350: 379-392.   DOI
15 Lee, S. J., M. J. Kim, S. H. In, S. Baek, and H. Lee. 2005. Immunocell therapy for lung cancer: dendritic cell based adjuvant therapy in mouse lung cancer model. Immune Netw. 5: 36-44.   DOI
16 Ward, K. A., L. A. Stewart, and A. P. Schwarer. 2006. CD34+-derived CD11c+++ BDCA-1++ CD123++ DC: expansion of a phenotypically undescribed myeloid DC1 population for use in adoptive immunotherapy. Cytotherapy 8: 130-140.   DOI
17 Encabo, A., P. Solves, E. Mateu, P. Sepúlveda, F. Carbonell- Uberos, and M. D. Miñana. 2004. Selective generation of different dendritic cell precursors from CD34+ cells by interleukin-6 and interleukin-3. Stem Cells 22: 725-740.   DOI
18 Guo, G., S. Chen, J. Zhang, L. Luo, J. Yu, H. Dong, H. Xu, Z. Su, and L. Wu. 2005. Antitumor activity of a fusion of esophageal carcinoma cells with dendritic cells derived from cord blood. Vaccine 23: 5225-5230.   DOI
19 Xu, R. L., Y. Tang, P. L. Ogburn, K. Malinowski, S. Madajewicz, F. Santiago-Schwarz, and Q. Fan. 2004. Implication of delayed TNF-alpha exposure on dendritic cell maturation and expansion from cryopreserved cord blood CD34+ hematopoietic progenitors. J. Immunol. Methods 293: 169-182.   DOI
20 Baleeiro, R. B., L. B. Anselmo, F. A. Soares, C. A. Pinto, O. Ramos, J. L. Gross, F. Haddad, R. N. Younes, M. Y. Tomiyoshi, P. C. Bergami-Santos, and J. A. Barbuto. 2008. High frequency of immature dendritic cells and altered in situ production of interleukin-4 and tumor necrosis factor-alpha in lung cancer. Cancer Immunol. Immunother. 57: 1335-1345.   DOI
21 Hirschowitz, E. A., T. Foody, G. E. Hidalgo, and J. R. Yannelli. 2007. Immunization of NSCLC patients with antigen- pulsed immature autologous dendritic cells. Lung Cancer 57: 365-372.   DOI
22 Moser, M. and K. M. Murphy. 2000. Dendritic cell regulation of TH1-TH2 development. Nat. Immunol. 1: 199-205.
23 Martín, P., G. M. del Hoyo, F. Anjuère, S. R. Ruiz, C. F. Arias, A. R. Marín, and C. Ardavín. 2000. Concept of lymphoid versus myeloid dendritic cell lineages revisited: both CD8alpha(−) and CD8alpha(+) dendritic cells are generated from CD4(low) lymphoid-committed precursors. Blood 96:2511-2519.