DOI QR코드

DOI QR Code

The CD28-B7 Family in Anti-Tumor Immunity: Emerging Concepts in Cancer Immunotherapy

  • Received : 2014.10.12
  • Accepted : 2014.11.28
  • Published : 2014.12.31

Abstract

The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy.

Keywords

References

  1. Ceeraz, S., E. C. Nowak, and R. J. Noelle. 2013. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol. 34: 556-563. https://doi.org/10.1016/j.it.2013.07.003
  2. Sharpe, A. H., and G. J. Freeman. 2002. The B7-CD28 superfamily. Nat. Rev. Immunol. 2: 116-126. https://doi.org/10.1038/nri727
  3. Sakaguchi, S., K. Wing, Y. Onishi, P. Prieto-Martin, and T. Yamaguchi. 2009. Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21: 1105-1111. https://doi.org/10.1093/intimm/dxp095
  4. Grosso, J. F., and M. N. Jure-Kunkel. 2013. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 13: 5.
  5. Yang, Y. F., J. P. Zou, J. Mu, R. Wijesuriya, S. Ono, T. Walunas, J. Bluestone, H. Fujiwara, and T. Hamaoka. 1997. Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res. 57: 4036-4041.
  6. Kwon, E. D., A. A. Hurwitz, B. A. Foster, C. Madias, A. L. Feldhaus, N. M. Greenberg, M. B. Burg, and J. P. Allison. 1997. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 94: 8099-8103. https://doi.org/10.1073/pnas.94.15.8099
  7. van, E. A., A. A. Hurwitz, and J. P. Allison. 1999. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190: 355-366. https://doi.org/10.1084/jem.190.3.355
  8. Demaria, S., N. Kawashima, A. M. Yang, M. L. Devitt, J. S. Babb, J. P. Allison, and S. C. Formenti. 2005. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11: 728-734.
  9. Hurwitz, A. A., T. F. Yu, D. R. Leach, and J. P. Allison. 1998. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl. Acad. Sci. U. S. A. 95: 10067-10071. https://doi.org/10.1073/pnas.95.17.10067
  10. Mokyr, M. B., T. Kalinichenko, L. Gorelik, and J. A. Bluestone. 1998. Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res. 58: 5301-5304.
  11. Waitz, R., S. B. Solomon, E. N. Petre, A. E. Trumble, M. Fasso, L. Norton, and J. P. Allison. 2012. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res. 72: 430-439. https://doi.org/10.1158/0008-5472.CAN-11-1782
  12. Phan, G. Q., J. C. Yang, R. M. Sherry, P. Hwu, S. L. Topalian, D. J. Schwartzentruber, N. P. Restifo, L. R. Haworth, C. A. Seipp, L. J. Freezer, K. E. Morton, S. A. Mavroukakis, P. H. Duray, S. M. Steinberg, J. P. Allison, T. A. Davis, and S. A. Rosenberg. 2003. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. U. S. A. 100: 8372-8377. https://doi.org/10.1073/pnas.1533209100
  13. Sanderson, K., R. Scotland, P. Lee, D. Liu, S. Groshen, J. Snively, S. Sian, G. Nichol, T. Davis, T. Keler, M. Yellin, and J. Weber. 2005. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol. 23: 741-750. https://doi.org/10.1200/JCO.2005.01.128
  14. Hodi, F. S., S. J. O'Day, D. F. McDermott, R. W. Weber, J. A. Sosman, J. B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J. C. Hassel, W. Akerley, A. J. van den Eertwegh, J. Lutzky, P. Lorigan, J. M. Vaubel, G. P. Linette, D. Hogg, C. H. Ottensmeier, C. Lebbe, C. Peschel, I. Quirt, J. I. Clark, J. D. Wolchok, J. S. Weber, J. Tian, M. J. Yellin, G. M. Nichol, A. Hoos, and W. J. Urba. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363: 711-723. https://doi.org/10.1056/NEJMoa1003466
  15. Robert, C., L. Thomas, I. Bondarenko, S. O'Day, J. Weber, C. Garbe, C. Lebbe, J. F. Baurain, A. Testori, J. J. Grob, N. Davidson, J. Richards, M. Maio, A. Hauschild, W. H. Miller, Jr., P. Gascon, M. Lotem, K. Harmankaya, R. Ibrahim, S. Francis, T. T. Chen, R. Humphrey, A. Hoos, and J. D. Wolchok. 2011. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364: 2517-2526. https://doi.org/10.1056/NEJMoa1104621
  16. Ribas, A. 2008. Overcoming immunologic tolerance to melanoma: targeting CTLA-4 with tremelimumab (CP-675,206). Oncologist Suppl. 4: 10-15.
  17. Ribas, A., R. Kefford, M. A. Marshall, C. J. Punt, J. B. Haanen, M. Marmol, C. Garbe, H. Gogas, J. Schachter, G. Linette, P. Lorigan, K. L. Kendra, M. Maio, U. Trefzer, M. Smylie, G. A. McArthur, B. Dreno, P. D. Nathan, J. Mackiewicz, J. M. Kirkwood, J. Gomez-Navarro, B. Huang, D. Pavlov, and A. Hauschild. 2013. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol. 31: 616-622. https://doi.org/10.1200/JCO.2012.44.6112
  18. Selby, M. J., J. J. Engelhardt, M. Quigley, K. A. Henning, T. Chen, M. Srinivasan, and A. J. Korman. 2013. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1: 32-42. https://doi.org/10.1158/2326-6066.CIR-13-0013
  19. Yuan, J., M. Adamow, B. A. Ginsberg, T. S. Rasalan, E. Ritter, H. F. Gallardo, Y. Xu, E. Pogoriler, S. L. Terzulli, D. Kuk, K. S. Panageas, G. Ritter, M. Sznol, R. Halaban, A. A. Jungbluth, J. P. Allison, L. J. Old, J. D. Wolchok, and S. Gnjatic. 2011. Integrated NY-ESO-1 antibody and $CD8^+$ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc. Natl. Acad. Sci. U. S. A. 108: 16723-16728. https://doi.org/10.1073/pnas.1110814108
  20. Liakou, C. I., A. Kamat, D. N. Tang, H. Chen, J. Sun, P. Troncoso, C. Logothetis, and P. Sharma. 2008. CTLA-4 blockade increases IFNgamma-producing $CD4^+ICOS^{hi}$ cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl. Acad. Sci. U. S. A. 105: 14987-14992. https://doi.org/10.1073/pnas.0806075105
  21. Keir, M. E., S. C. Liang, I. Guleria, Y. E. Latchman, A. Qipo, L. A. Albacker, M. Koulmanda, G. J. Freeman, M. H. Sayegh, and A. H. Sharpe. 2006. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203: 883-895. https://doi.org/10.1084/jem.20051776
  22. Larsson, M., E. M. Shankar, K. F. Che, A. Saeidi, R. Ellegard, M. Barathan, V. Velu, and A. Kamarulzaman. 2013. Molecular signatures of T-cell inhibition in HIV-1 infection. Retrovirology 10: 31. https://doi.org/10.1186/1742-4690-10-31
  23. Pardoll, D. M. 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12: 252-264. https://doi.org/10.1038/nrc3239
  24. Ahmadzadeh, M., L. A. Johnson, B. Heemskerk, J. R. Wunderlich, M. E. Dudley, D. E. White, and S. A. Rosenberg. 2009. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114: 1537-1544. https://doi.org/10.1182/blood-2008-12-195792
  25. Matsuzaki, J., S. Gnjatic, P. Mhawech-Fauceglia, A. Beck, A. Miller, T. Tsuji, C. Eppolito, F. Qian, S. Lele, P. Shrikant, L. J. Old, and K. Odunsi. 2010. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl. Acad. Sci. U. S. A. 107: 7875-7880. https://doi.org/10.1073/pnas.1003345107
  26. Barber, D. L., E. J. Wherry, D. Masopust, B. Zhu, J. P. Allison, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439: 682-687. https://doi.org/10.1038/nature04444
  27. Dong, H., S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, and L. Chen. 2002. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8: 793-800.
  28. Iwai, Y., M. Ishida, Y. Tanaka, T. Okazaki, T. Honjo, and N. Minato. 2002. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. U. S. A. 99: 12293-12297. https://doi.org/10.1073/pnas.192461099
  29. Ghebeh, H., S. Mohammed, A. Al-Omair, A. Qattan, C. Lehe, G. Al-Qudaihi, N. Elkum, M. Alshabanah, A. S. Bin, A. Tulbah, D. Ajarim, T. Al-Tweigeri, and S. Dermime. 2006. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8: 190-198. https://doi.org/10.1593/neo.05733
  30. Steidl, C., S. P. Shah, B. W. Woolcock, L. Rui, M. Kawahara, P. Farinha, N. A. Johnson, Y. Zhao, A. Telenius, S. B. Neriah, A. McPherson, B. Meissner, U. C. Okoye, A. Diepstra, B. A. van den, M. Sun, G. Leung, S. J. Jones, J. M. Connors, D. G. Huntsman, K. J. Savage, L. M. Rimsza, D. E. Horsman, L. M. Staudt, U. Steidl, M. A. Marra, and R. D. Gascoyne. 2011. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471: 377-381. https://doi.org/10.1038/nature09754
  31. Rosenwald, A., G. Wright, K. Leroy, X. Yu, P. Gaulard, R. D. Gascoyne, W. C. Chan, T. Zhao, C. Haioun, T. C. Greiner, D. D. Weisenburger, J. C. Lynch, J. Vose, J. O. Armitage, E. B. Smeland, S. Kvaloy, H. Holte, J. Delabie, E. Campo, E. Montserrat, A. Lopez-Guillermo, G. Ott, H. K. Muller-Hermelink, J. M. Connors, R. Braziel, T. M. Grogan, R. I. Fisher, T. P. Miller, M. LeBlanc, M. Chiorazzi, H. Zhao, L. Yang, J. Powell, W. H. Wilson, E. S. Jaffe, R. Simon, R. D. Klausner, and L. M. Staudt. 2003. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J. Exp. Med. 198: 851-862. https://doi.org/10.1084/jem.20031074
  32. Hino, R., K. Kabashima, Y. Kato, H. Yagi, M. Nakamura, T. Honjo, T. Okazaki, and Y. Tokura. 2010. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer 116: 1757-1766. https://doi.org/10.1002/cncr.24899
  33. Gao, Q., X. Y. Wang, S. J. Qiu, I. Yamato, M. Sho, Y. Nakajima, J. Zhou, B. Z. Li, Y. H. Shi, Y. S. Xiao, Y. Xu, and J. Fan. 2009. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin. Cancer Res. 15: 971-979. https://doi.org/10.1158/1078-0432.CCR-08-1608
  34. Muenst, S., A. R. Schaerli, F. Gao, S. Daster, E. Trella, R. A. Droeser, M. G. Muraro, P. Zajac, R. Zanetti, W. E. Gillanders, W. P. Weber, and S. D. Soysal. 2014. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res. Treat. 146: 15-24. https://doi.org/10.1007/s10549-014-2988-5
  35. Taube, J. M., R. A. Anders, G. D. Young, H. Xu, R. Sharma, T. L. McMiller, S. Chen, A. P. Klein, D. M. Pardoll, S. L. Topalian, and L. Chen. 2012. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4: 127ra37.
  36. Zheng, Z., Z. Bu, X. Liu, L. Zhang, Z. Li, A. Wu, X. Wu, X. Cheng, X. Xing, H. Du, X. Wang, Y. Hu, and J. Ji. 2014. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chin. J. Cancer Res. 26: 104-111.
  37. Iwai, Y., S. Terawaki, and T. Honjo. 2005. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int. Immunol. 17: 133-144.
  38. Harvey, R. D. 2014. Immunologic and clinical effects of targeting PD-1 in lung cancer. Clin. Pharmacol. Ther. 96: 214-223. https://doi.org/10.1038/clpt.2014.74
  39. Okudaira, K., R. Hokari, Y. Tsuzuki, Y. Okada, S. Komoto, C. Watanabe, C. Kurihara, A. Kawaguchi, S. Nagao, M. Azuma, H. Yagita, and S. Miura. 2009. Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a mouse pancreatic cancer model. Int. J. Oncol. 35: 741-749.
  40. Liu, X., J. X. Gao, J. Wen, L. Yin, O. Li, T. Zuo, T. F. Gajewski, Y. X. Fu, P. Zheng, and Y. Liu. 2003. B7DC/PDL2 promotes tumor immunity by a PD-1-independent mechanism. J. Exp. Med. 197: 1721-1730. https://doi.org/10.1084/jem.20022089
  41. Brahmer, J. R., C. G. Drake, I. Wollner, J. D. Powderly, J. Picus, W. H. Sharfman, E. Stankevich, A. Pons, T. M. Salay, T. L. McMiller, M. M. Gilson, C. Wang, M. Selby, J. M. Taube, R. Anders, L. Chen, A. J. Korman, D. M. Pardoll, I. Lowy, and S. L. Topalian. 2010. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28: 3167-3175. https://doi.org/10.1200/JCO.2009.26.7609
  42. Topalian, S. L., F. S. Hodi, J. R. Brahmer, S. N. Gettinger, D. C. Smith, D. F. McDermott, J. D. Powderly, R. D. Carvajal, J. A. Sosman, M. B. Atkins, P. D. Leming, D. R. Spigel, S. J. Antonia, L. Horn, C. G. Drake, D. M. Pardoll, L. Chen, W. H. Sharfman, R. A. Anders, J. M. Taube, T. L. McMiller, H. Xu, A. J. Korman, M. Jure-Kunkel, S. Agrawal, D. McDonald, G. D. Kollia, A. Gupta, J. M. Wigginton, and M. Sznol. 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366: 2443-2454. https://doi.org/10.1056/NEJMoa1200690
  43. Hamid, O., C. Robert, A. Daud, F. S. Hodi, W. J. Hwu, R. Kefford, J. D. Wolchok, P. Hersey, R. W. Joseph, J. S. Weber, R. Dronca, T. C. Gangadhar, A. Patnaik, H. Zarour, A. M. Joshua, K. Gergich, J. Elassaiss-Schaap, A. Algazi, C. Mateus, P. Boasberg, P. C. Tumeh, B. Chmielowski, S. W. Ebbinghaus, X. N. Li, S. P. Kang, and A. Ribas. 2013. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369: 134-144. https://doi.org/10.1056/NEJMoa1305133
  44. Brahmer, J. R., S. S. Tykodi, L. Q. Chow, W. J. Hwu, S. L. Topalian, P. Hwu, C. G. Drake, L. H. Camacho, J. Kauh, K. Odunsi, H. C. Pitot, O. Hamid, S. Bhatia, R. Martins, K. Eaton, S. Chen, T. M. Salay, S. Alaparthy, J. F. Grosso, A. J. Korman, S. M. Parker, S. Agrawal, S. M. Goldberg, D. M. Pardoll, A. Gupta, and J. M. Wigginton. 2012. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366: 2455-2465. https://doi.org/10.1056/NEJMoa1200694
  45. Wolchok, J. D., H. Kluger, M. K. Callahan, M. A. Postow, N. A. Rizvi, A. M. Lesokhin, N. H. Segal, C. E. Ariyan, R. A. Gordon, K. Reed, M. M. Burke, A. Caldwell, S. A. Kronenberg, B. U. Agunwamba, X. Zhang, I. Lowy, H. D. Inzunza, W. Feely, C. E. Horak, Q. Hong, A. J. Korman, J. M. Wigginton, A. Gupta, and M. Sznol. 2013. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369: 122-133. https://doi.org/10.1056/NEJMoa1302369
  46. Spranger, S., R. M. Spaapen, Y. Zha, J. Williams, Y. Meng, T. T. Ha, and T. F. Gajewski. 2013. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci. Transl. Med. 5: 200ra116.
  47. Tafuri, A., A. Shahinian, F. Bladt, S. K. Yoshinaga, M. Jordana, A. Wakeham, L. M. Boucher, D. Bouchard, V. S. Chan, G. Duncan, B. Odermatt, A. Ho, A. Itie, T. Horan, J. S. Whoriskey, T. Pawson, J. M. Penninger, P. S. Ohashi, and T. W. Mak. 2001. ICOS is essential for effective T-helper-cell responses. Nature 409: 105-109. https://doi.org/10.1038/35051113
  48. McAdam, A. J., R. J. Greenwald, M. A. Levin, T. Chernova, N. Malenkovich, V. Ling, G. J. Freeman, and A. H. Sharpe. 2001. ICOS is critical for CD40-mediated antibody class switching. Nature 409: 102-105. https://doi.org/10.1038/35051107
  49. Parry, R. V., C. A. Rumbley, L. H. Vandenberghe, C. H. June, and J. L. Riley. 2003. CD28 and inducible costimulatory protein Src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase, Bcl-xL, and IL-2 expression in primary human CD4 T lymphocytes. J. Immunol. 171: 166-174. https://doi.org/10.4049/jimmunol.171.1.166
  50. Gigoux, M., J. Shang, Y. Pak, M. Xu, J. Choe, T. W. Mak, and W. K. Suh. 2009. Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc. Natl. Acad. Sci. U. S. A. 106: 20371-20376. https://doi.org/10.1073/pnas.0911573106
  51. Gigoux, M., A. Lovato, J. Leconte, J. Leung, N. Sonenberg, and W. K. Suh. 2014. Inducible costimulator facilitates T-dependent B cell activation by augmenting IL-4 translation. Mol. Immunol. 59: 46-54. https://doi.org/10.1016/j.molimm.2014.01.008
  52. Rolf, J., K. Fairfax, and M. Turner. 2010. Signaling pathways in T follicular helper cells. J. Immunol. 184: 6563-6568. https://doi.org/10.4049/jimmunol.1000202
  53. Greenwald, R. J., G. J. Freeman, and A. H. Sharpe. 2005. The B7 family revisited. Annu. Rev. Immunol. 23: 515-548. https://doi.org/10.1146/annurev.immunol.23.021704.115611
  54. Lee, H., J. H. Kim, S. Y. Yang, J. Kong, M. Oh, D. H. Jeong, J. I. Chung, K. B. Bae, J. Y. Shin, K. H. Hong, and I. Choi. 2010. Peripheral blood gene expression of B7 and CD28 family members associated with tumor progression and microscopic lymphovascular invasion in colon cancer patients. J. Cancer Res. Clin. Oncol. 136: 1445-1452. https://doi.org/10.1007/s00432-010-0800-4
  55. Bogunovic, D., D. W. O'Neill, I. Belitskaya-Levy, V. Vacic, Y. L. Yu, S. Adams, F. Darvishian, R. Berman, R. Shapiro, A. C. Pavlick, S. Lonardi, J. Zavadil, I. Osman, and N. Bhardwaj. 2009. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc. Natl. Acad. Sci. U. S. A. 106: 20429-20434. https://doi.org/10.1073/pnas.0905139106
  56. Tamura, H., K. Dan, K. Tamada, K. Nakamura, Y. Shioi, H. Hyodo, S. D. Wang, H. Dong, L. Chen, and K. Ogata. 2005. Expression of functional B7-H2 and B7.2 costimulatory molecules and their prognostic implications in de novo acute myeloid leukemia. Clin. Cancer Res. 11: 5708-5717. https://doi.org/10.1158/1078-0432.CCR-04-2672
  57. Martin-Orozco, N., Y. Li, Y. Wang, S. Liu, P. Hwu, Y. J. Liu, C. Dong, and L. Radvanyi. 2010. Melanoma cells express ICOS ligand to promote the activation and expansion of T-regulatory cells. Cancer Res. 70: 9581-9590. https://doi.org/10.1158/0008-5472.CAN-10-1379
  58. Sim, G. C., N. Martin-Orozco, L. Jin, Y. Yang, S. Wu, E. Washington, D. Sanders, C. Lacey, Y. Wang, L. Vence, P. Hwu, and L. Radvanyi. 2014. IL-2 therapy promotes suppressive $ICOS^+$ Treg expansion in melanoma patients. J. Clin. Invest. 124: 99-110. https://doi.org/10.1172/JCI46266
  59. Carthon, B. C., J. D. Wolchok, J. Yuan, A. Kamat, D. S. Ng Tang, J. Sun, G. Ku, P. Troncoso, C. J. Logothetis, J. P. Allison, and P. Sharma. 2010. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin. Cancer Res. 16: 2861-2871. https://doi.org/10.1158/1078-0432.CCR-10-0569
  60. Vonderheide, R. H., P. M. LoRusso, M. Khalil, E. M. Gartner, D. Khaira, D. Soulieres, P. Dorazio, J. A. Trosko, J. Ruter, G. L. Mariani, T. Usari, and S. M. Domchek. 2010. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin. Cancer Res. 16: 3485-3494. https://doi.org/10.1158/1078-0432.CCR-10-0505
  61. Fu, T., Q. He, and P. Sharma. 2011. The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy. Cancer Res. 71: 5445-5454. https://doi.org/10.1158/0008-5472.CAN-11-1138
  62. Guedan, S., X. Chen, A. Madar, C. Carpenito, S. E. McGettigan, M. J. Frigault, J. Lee, A. D. Posey, Jr., J. Scholler, N. Scholler, R. Bonneau, and C. H. June. 2014. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124: 1070-1080. https://doi.org/10.1182/blood-2013-10-535245
  63. Hashiguchi, M., H. Kobori, P. Ritprajak, Y. Kamimura, H. Kozono, and M. Azuma. 2008. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc. Natl. Acad. Sci. U. S. A. 105: 10495-10500. https://doi.org/10.1073/pnas.0802423105
  64. Leitner, J., C. Klauser, W. F. Pickl, J. Stockl, O. Majdic, A. F. Bardet, D. P. Kreil, C. Dong, T. Yamazaki, G. Zlabinger, K. Pfistershammer, and P. Steinberger. 2009. B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. Eur. J. Immunol. 39: 1754-1764. https://doi.org/10.1002/eji.200839028
  65. Chapoval, A. I., J. Ni, J. S. Lau, R. A. Wilcox, D. B. Flies, D. Liu, H. Dong, G. L. Sica, G. Zhu, K. Tamada, and L. Chen. 2001. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat. Immunol. 2: 269-274. https://doi.org/10.1038/85339
  66. Suh, W. K., B. U. Gajewska, H. Okada, M. A. Gronski, E. M. Bertram, W. Dawicki, G. S. Duncan, J. Bukczynski, S. Plyte, A. Elia, A. Wakeham, A. Itie, S. Chung, C. J. Da, S. Arya, T. Horan, P. Campbell, K. Gaida, P. S. Ohashi, T. H. Watts, S. K. Yoshinaga, M. R. Bray, M. Jordana, and T. W. Mak. 2003. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat. Immunol. 4: 899-906. https://doi.org/10.1038/ni967
  67. Wang, L., C. C. Fraser, K. Kikly, A. D. Wells, R. Han, A. J. Coyle, L. Chen, and W. W. Hancock. 2005. B7-H3 promotes acute and chronic allograft rejection. Eur. J. Immunol. 35: 428-438. https://doi.org/10.1002/eji.200425518
  68. Prasad, D. V., T. Nguyen, Z. Li, Y. Yang, J. Duong, Y. Wang, and C. Dong. 2004. Murine B7-H3 is a negative regulator of T cells. J. Immunol. 173: 2500-2506. https://doi.org/10.4049/jimmunol.173.4.2500
  69. Collins, M., V. Ling, and B. M. Carreno. 2005. The B7 family of immune-regulatory ligands. Genome Biol. 6: 223. https://doi.org/10.1186/gb-2005-6-6-223
  70. Loos, M., D. M. Hedderich, H. Friess, and J. Kleeff. 2010. B7-h3 and its role in antitumor immunity. Clin. Dev. Immunol. 2010: 683875.
  71. Luo, L., A. I. Chapoval, D. B. Flies, G. Zhu, F. Hirano, S. Wang, J. S. Lau, H. Dong, K. Tamada, A. S. Flies, Y. Liu, and L. Chen. 2004. B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific $CD8^+$ cytolytic T cells. J. Immunol. 173: 5445-5450. https://doi.org/10.4049/jimmunol.173.9.5445
  72. Sun, X., M. Vale, E. Leung, J. R. Kanwar, R. Gupta, and G. W. Krissansen. 2003. Mouse B7-H3 induces antitumor immunity. Gene Ther. 10: 1728-1734. https://doi.org/10.1038/sj.gt.3302070
  73. Loos, M., D. M. Hedderich, M. Ottenhausen, N. A. Giese, M. Laschinger, I. Esposito, J. Kleeff, and H. Friess. 2009. Expression of the costimulatory molecule B7-H3 is associated with prolonged survival in human pancreatic cancer. BMC Cancer 9: 463. https://doi.org/10.1186/1471-2407-9-463
  74. Wu, C. P., J. T. Jiang, M. Tan, Y. B. Zhu, M. Ji, K. F. Xu, J. M. Zhao, G. B. Zhang, and X. G. Zhang. 2006. Relationship between co-stimulatory molecule B7-H3 expression and gastric carcinoma histology and prognosis. World J. Gastroenterol. 12: 457-459. https://doi.org/10.3748/wjg.v12.i3.457
  75. Zang, X., R. H. Thompson, H. A. Al-Ahmadie, A. M. Serio, V. E. Reuter, J. A. Eastham, P. T. Scardino, P. Sharma, and J. P. Allison. 2007. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc. Natl. Acad. Sci. U. S. A. 104: 19458-19463. https://doi.org/10.1073/pnas.0709802104
  76. Roth, T. J., Y. Sheinin, C. M. Lohse, S. M. Kuntz, X. Frigola, B. A. Inman, A. E. Krambeck, M. E. McKenney, R. J. Karnes, M. L. Blute, J. C. Cheville, T. J. Sebo, and E. D. Kwon. 2007. B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res. 67: 7893-7900. https://doi.org/10.1158/0008-5472.CAN-07-1068
  77. Sun, J., L. J. Chen, G. B. Zhang, J. T. Jiang, M. Zhu, Y. Tan, H. T. Wang, B. F. Lu, and X. G. Zhang. 2010. Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma. Cancer Immunol. Immunother. 59: 1163-1171. https://doi.org/10.1007/s00262-010-0841-1
  78. Xu, H., I. Y. Cheung, H. F. Guo, and N. K. Cheung. 2009. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res. 69: 6275-6281. https://doi.org/10.1158/0008-5472.CAN-08-4517
  79. Sica, G. L., I. H. Choi, G. Zhu, K. Tamada, S. D. Wang, H. Tamura, A. I. Chapoval, D. B. Flies, J. Bajorath, and L. Chen. 2003. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18: 849-861. https://doi.org/10.1016/S1074-7613(03)00152-3
  80. Choi, I. H., G. Zhu, G. L. Sica, S. E. Strome, J. C. Cheville, J. S. Lau, Y. Zhu, D. B. Flies, K. Tamada, and L. Chen. 2003. Genomic organization and expression analysis of B7-H4, an immune inhibitory molecule of the B7 family. J. Immunol. 171: 4650-4654. https://doi.org/10.4049/jimmunol.171.9.4650
  81. Kryczek, I., L. Zou, P. Rodriguez, G. Zhu, S. Wei, P. Mottram, M. Brumlik, P. Cheng, T. Curiel, L. Myers, A. Lackner, X. Alvarez, A. Ochoa, L. Chen, and W. Zou. 2006. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203: 871-881. https://doi.org/10.1084/jem.20050930
  82. Zang, X., P. Loke, J. Kim, K. Murphy, R. Waitz, and J. P. Allison. 2003. B7x: a widely expressed B7 family member that inhibits T cell activation. Proc. Natl. Acad. Sci. U. S. A. 100: 10388-10392. https://doi.org/10.1073/pnas.1434299100
  83. Ou, D., X. Wang, D. L. Metzger, Z. Ao, P. Pozzilli, R. F. James, L. Chen, and G. L. Warnock. 2006. Suppression of human T-cell responses to beta-cells by activation of B7-H4 pathway. Cell Transplant. 15: 399-410. https://doi.org/10.3727/000000006783981837
  84. Suh, W. K., S. Wang, G. S. Duncan, Y. Miyazaki, E. Cates, T. Walker, B. U. Gajewska, E. Deenick, W. Dawicki, H. Okada, A. Wakeham, A. Itie, T. H. Watts, P. S. Ohashi, M. Jordana, H. Yoshida, and T. W. Mak. 2006. Generation and characterization of B7-H4/B7S1/B7x-deficient mice. Mol. Cell Biol. 26: 6403-6411. https://doi.org/10.1128/MCB.00755-06
  85. Zhu, G., M. M. Augustine, T. Azuma, L. Luo, S. Yao, S. Anand, A. C. Rietz, J. Huang, H. Xu, A. S. Flies, S. J. Flies, K. Tamada, M. Colonna, J. M. van Deursen, and L. Chen. 2009. B7-H4-deficient mice display augmented neutrophil-mediated innate immunity. Blood 113: 1759-1767. https://doi.org/10.1182/blood-2008-01-133223
  86. Leung, J., and W. K. Suh. 2013. Host B7-H4 regulates antitumor T cell responses through inhibition of myeloid-derived suppressor cells in a 4T1 tumor transplantation model. J. Immunol. 190: 6651-6661. https://doi.org/10.4049/jimmunol.1201242
  87. Cheng, L., J. Jiang, R. Gao, S. Wei, F. Nan, S. Li, and B. Kong. 2009. B7-H4 expression promotes tumorigenesis in ovarian cancer. Int. J. Gynecol. Cancer 19: 1481-1486. https://doi.org/10.1111/IGC.0b013e3181ad0fa2
  88. Salceda, S., T. Tang, M. Kmet, A. Munteanu, M. Ghosh, R. Macina, W. Liu, G. Pilkington, and J. Papkoff. 2005. The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp. Cell Res. 306: 128-141. https://doi.org/10.1016/j.yexcr.2005.01.018
  89. Sedy, J. R., M. Gavrieli, K. G. Potter, M. A. Hurchla, R. C. Lindsley, K. Hildner, S. Scheu, K. Pfeffer, C. F. Ware, T. L. Murphy, and K. M. Murphy. 2005. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat. Immunol. 6: 90-98. https://doi.org/10.1038/ni1144
  90. Abadi, Y. M., H. Jeon, K. C. Ohaegbulam, L. Scandiuzzi, K. Ghosh, K. A. Hofmeyer, J. S. Lee, A. Ray, C. Gravekamp, and X. Zang. 2013. Host b7x promotes pulmonary metastasis of breast cancer. J. Immunol. 190: 3806-3814. https://doi.org/10.4049/jimmunol.1202439
  91. He, C., H. Qiao, H. Jiang, and X. Sun. 2011. The inhibitory role of b7-h4 in antitumor immunity: association with cancer progression and survival. Clin. Dev. Immunol. 2011: 695834.
  92. Tringler, B., S. Zhuo, G. Pilkington, K. C. Torkko, M. Singh, M. S. Lucia, D. E. Heinz, J. Papkoff, and K. R. Shroyer. 2005. B7-h4 is highly expressed in ductal and lobular breast cancer. Clin. Cancer Res. 11: 1842-1848. https://doi.org/10.1158/1078-0432.CCR-04-1658
  93. Bignotti, E., R. A. Tassi, S. Calza, A. Ravaggi, C. Romani, E. Rossi, M. Falchetti, F. E. Odicino, S. Pecorelli, and A. D. Santin. 2006. Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol. Oncol. 103: 405-416. https://doi.org/10.1016/j.ygyno.2006.03.056
  94. Le, H. K., L. Graham, E. Cha, J. K. Morales, M. H. Manjili, and H. D. Bear. 2009. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int. Immunopharmacol. 9: 900-909. https://doi.org/10.1016/j.intimp.2009.03.015
  95. Dangaj, D., E. Lanitis, A. Zhao, S. Joshi, Y. Cheng, R. Sandaltzopoulos, H. J. Ra, G. net-Desnoyers, D. J. Powell, Jr., and N. Scholler. 2013. Novel recombinant human b7-h4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses. Cancer Res. 73: 4820-4829. https://doi.org/10.1158/0008-5472.CAN-12-3457
  96. Le, M., I, W. Chen, J. L. Lines, M. Day, J. Li, P. Sergent, R. J. Noelle, and L. Wang. 2014. VISTA Regulates the Development of Protective Antitumor Immunity. Cancer Res. 74: 1933-1944. https://doi.org/10.1158/0008-5472.CAN-13-1506
  97. Zhao, R., J. M. Chinai, S. Buhl, L. Scandiuzzi, A. Ray, H. Jeon, K. C. Ohaegbulam, K. Ghosh, A. Zhao, M. D. Scharff, and X. Zang. 2013. HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function. Proc. Natl. Acad. Sci. U. S. A. 110: 9879-9884. https://doi.org/10.1073/pnas.1303524110
  98. Brandt, C. S., M. Baratin, E. C. Yi, J. Kennedy, Z. Gao, B. Fox, B. Haldeman, C. D. Ostrander, T. Kaifu, C. Chabannon, A. Moretta, R. West, W. Xu, E. Vivier, and S. D. Levin. 2009. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 206: 1495-1503. https://doi.org/10.1084/jem.20090681

Cited by

  1. Inhibitory immunologicznych punktów kontrolnych podziału komórki w leczeniu chorób nowotworowych vol.47, pp.2, 2014, https://doi.org/10.1016/j.achaem.2016.04.008
  2. Comprehensive molecular profiling of the B7 family of immune-regulatory ligands in breast cancer vol.5, pp.8, 2014, https://doi.org/10.1080/2162402x.2016.1207841
  3. Assessment of combined expression of B7-H3 and B7-H4 as prognostic marker in esophageal cancer patients vol.7, pp.47, 2014, https://doi.org/10.18632/oncotarget.12628
  4. Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors vol.7, pp.6, 2014, https://doi.org/10.18632/oncotarget.6902
  5. Knockdown of B7-H6 inhibits tumor progression and enhances chemosensitivity in B-cell non-Hodgkin lymphoma vol.48, pp.4, 2014, https://doi.org/10.3892/ijo.2016.3393
  6. SKAP2 Promotes Podosome Formation to Facilitate Tumor-Associated Macrophage Infiltration and Metastatic Progression vol.76, pp.2, 2016, https://doi.org/10.1158/0008-5472.can-15-1879
  7. Immunotherapy for advanced melanoma: future directions vol.8, pp.2, 2016, https://doi.org/10.2217/imt.15.111
  8. MUC1 immunotherapy against a metastatic mammary adenocarcinoma model: Importance of IFN-gamma vol.37, pp.1, 2014, https://doi.org/10.1515/prilozi-2016-0001
  9. The tumor suppressor miR-124 inhibits cell proliferation and invasion by targeting B7-H3 in osteosarcoma vol.37, pp.11, 2016, https://doi.org/10.1007/s13277-016-5386-2
  10. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis vol.14, pp.1, 2016, https://doi.org/10.1186/s12916-016-0635-1
  11. Improved osteogenesis and upregulated immunogenicity in human placenta-derived mesenchymal stem cells primed with osteogenic induction medium vol.7, pp.1, 2016, https://doi.org/10.1186/s13287-016-0400-6
  12. Synergistic effects of host B7-H4 deficiency and gemcitabine treatment on tumor regression and anti-tumor T cell immunity in a mouse model vol.66, pp.4, 2014, https://doi.org/10.1007/s00262-016-1950-2
  13. Recent Advances in Aptamers Targeting Immune System vol.40, pp.1, 2014, https://doi.org/10.1007/s10753-016-0437-9
  14. Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications vol.6, pp.12, 2017, https://doi.org/10.1080/2162402x.2017.1371896
  15. B7-H3 promotes the proliferation, migration and invasiveness of cervical cancer cells and is an indicator of poor prognosis vol.38, pp.2, 2014, https://doi.org/10.3892/or.2017.5730
  16. Immunoregulatory protein B7‐H3 promotes growth and decreases sensitivity to therapy in metastatic melanoma cells vol.30, pp.5, 2014, https://doi.org/10.1111/pcmr.12599
  17. B7-H3 in tumors: friend or foe for tumor immunity? vol.81, pp.2, 2014, https://doi.org/10.1007/s00280-017-3508-1
  18. QSAR, docking, ADMET, and system pharmacology studies on tormentic acid derivatives for anticancer activity vol.36, pp.9, 2018, https://doi.org/10.1080/07391102.2017.1355846
  19. Inducible Co-Stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy vol.22, pp.4, 2014, https://doi.org/10.1080/14728222.2018.1444753
  20. Expression of Programmed Death-Ligand 1 by Human Colonic CD90 + Stromal Cells Differs Between Ulcerative Colitis and Crohn’s Disease and Determines Their Capacity to Suppress Th1 Cells vol.9, pp.None, 2018, https://doi.org/10.3389/fimmu.2018.01125
  21. Single-Cell Transcriptomics in Cancer Immunobiology: The Future of Precision Oncology vol.9, pp.None, 2014, https://doi.org/10.3389/fimmu.2018.02582
  22. A Phase 2 Study to Assess the Immunomodulatory Capacity of a Lecithin-based Delivery System of Curcumin in Endometrial Cancer vol.5, pp.None, 2018, https://doi.org/10.3389/fnut.2018.00138
  23. Knockdown of B7H6 inhibits tumor progression in triple-negative breast cancer vol.16, pp.1, 2014, https://doi.org/10.3892/ol.2018.8689
  24. PD-1/PD-L1 in disease vol.10, pp.2, 2014, https://doi.org/10.2217/imt-2017-0120
  25. CCL5-deficiency enhances intratumoral infiltration of CD8 + T cells in colorectal cancer vol.9, pp.7, 2014, https://doi.org/10.1038/s41419-018-0796-2
  26. B7-H3 and B7-H4 expression in phyllodes tumors of the breast detected by RNA in situ hybridization and immunohistochemistry: Association with clinicopathological features and T-cell infiltration vol.40, pp.11, 2014, https://doi.org/10.1177/1010428318815032
  27. Association of B7-H4, PD-L1, and tumor infiltrating lymphocytes with outcomes in breast cancer vol.4, pp.None, 2018, https://doi.org/10.1038/s41523-018-0095-1
  28. Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs) vol.27, pp.1, 2014, https://doi.org/10.4062/biomolther.2018.201
  29. High expression of B7-H2 or B7-H3 is associated with poor prognosis in hepatocellular carcinoma vol.19, pp.5, 2019, https://doi.org/10.3892/mmr.2019.10080
  30. B7-CD28 gene family expression is associated with prognostic and immunological characteristics of diffuse large B-cell lymphoma vol.11, pp.12, 2014, https://doi.org/10.18632/aging.102025
  31. Inducible T‐cell co‐stimulator: Signaling mechanisms in T follicular helper cells and beyond vol.291, pp.1, 2014, https://doi.org/10.1111/imr.12771
  32. B7-H3 and B7-H4 Expression in Breast Cancer and Their Association with Clinicopathological Variables and T Cell Infiltration vol.87, pp.3, 2014, https://doi.org/10.1159/000505756
  33. Engineering Newcastle Disease Virus as an Oncolytic Vector for Intratumoral Delivery of Immune Checkpoint Inhibitors and Immunocytokines vol.94, pp.3, 2020, https://doi.org/10.1128/jvi.01677-19
  34. B7-1 and GM-CSF enhance the anti-tumor immune effect of DC-tumor fusion vaccine in the treatment of prostate cancer vol.37, pp.11, 2014, https://doi.org/10.1007/s12032-020-01433-2