• 제목/요약/키워드: Anti-proliferative effect

검색결과 252건 처리시간 0.028초

인체 전립선 상피세포에서 HDAC 저해제 trichostatin A의 caspase 및 NF-κB의 활성화를 통한 apoptosis 유도 (Induction of Apoptosis by HDAC Inhibitor Trichostatin A through Activation of Caspases and NF-κB in Human Prostate Epithelial Cells.)

  • 박철;김성윤;최병태;이원호;최영현
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.336-343
    • /
    • 2008
  • 본 연구에서는 인체전립선 상피세포인 267B1 세포에서 HDAC 저해제인 TSA에 의한 증식억제가 apoptosis 유도에 의한 것임을 제시하였다. 이러한 TSA에 의한 267B1 세포의 apoptosis에는 c-IAP-1 및 c-IAP-2와 같은 IAP family의 발현감소가 동반되었으나 Bax 및 Bcl-2와 같은 Bcl-2 family의 발현에는 큰 변화가 없었다. 그리고 TSA에 의한 267Bl 세포의 apoptosis는 caspase의 활성에 의한 표적 단백질들의 분해와 연관성이 있었다. 또한 TSA에 의한 apoptosis 유도에서 $NF-{\kappa}B$의 활성이 증가된다는 것을 세포질에서 $NF-{\kappa}B$의 핵 내로의 이동에 따른 전사활성의 증가 현상에 의한 것임을 다양한 방법으로 제시하였다. 본 연구의 결과는 TSA와 같은 HDAC 저해제에 의한 apoptosis 유도에는 $NF-{\kappa}B$의 활성 증가가 동반될 수 있음을 보여주는 결과로서 HDAC 저해제의 항암활성에 대한 $NF-{\kappa}B$의 새로운 역할 가능성을 제시하여 주는 것으로서 이에 관한 추가적인 연구의 필요성을 제시하였다.

종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도 (Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells)

  • 신동역;김기영;최병태;강호성;정지형;최영현
    • 생명과학회지
    • /
    • 제17권10호
    • /
    • pp.1447-1451
    • /
    • 2007
  • 해양생물 유래 항암활성을 가지는 천연물의 탐색과정에서 해면동물에서 유래된 PTX-2는 p53 결손 암세포에서 세포독성 효과가 높은 것으로 보고된 바 있다. 본 연구에서는 인체 간암세포 모델을 이용하여 PTX-2의 효능을 조사한 결과는 p53 결손 Hep3B 세포에서 p53 정상 HepG2에 비하여 항암활성이 매우 높았으며, 이는 apoptosis 유발과 연관성이 있음을 확인하였다. PTX-2에 의한 Hep3B 세포의 apoptosis 유발은 DFF family의 발현 변화, pro-apoptotic Bax 및 Bcl-xS 단백질의 발현 증가, caspases (-3, -8 및 -9)의 활성화 등이 관여함을 알 수 있었다. PTX-2는 또한 Hep3B 세포에서 AKT 및 ERK1/2의 활성화를 유도하였으며, caspase-3, AKT 및 ERK1/2의 특이적 저해제에 의하여 PTX-2에 의한 세포증식 억제 효능이 유의적으로 감소되었다. 본 연구는 PTX-2에 의한 Hep3B 세포에서의 apoptosis 유도에 AKT 및 ERK1/2 신호 전달 경로가 중요한 역할을 하고 있음을 보여주는 결과이다.

인체 폐암세포에서 인삼사폐탕에 의한 Cdk inhibitor p27의 발현 증가 및 pRB의 인산화 억제 (Induction of Cdk inhibitor p27 and Inhibition of pRB Phosphorylation by Insamsapye-tang Treatment in Human Lung Cancer A549 Cells)

  • 이민우;서창훈;박철;이원호;최영현;박동일
    • 동의생리병리학회지
    • /
    • 제17권1호
    • /
    • pp.213-219
    • /
    • 2003
  • We investigated the effects of Insamsapye-tang (ISSPT) water extract on the cell proliferation of human lung carcinoma A549 cells. ISSPT treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner. This anti-proliferative effect of A549 cells by ISSSPT treatment was associated with morphological changes such as membrane shrinking and cell rounding up. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by ISSPT treatment in a concentration-dependent manner. ISSPT treatment induced the levels of tumor suppressor p53 protein and cyclin-dependent kinase (Cdk) inhibitor p27 without significant alteration of cyclins and Cdks expression. In addition, ISSPT treatment resulted in down-regulation of phosphorylated retinoblastoma protein (pRB). However, the levels of p130, the pRB family protein, and transcription factors. E2F-1 and E2F-4. were remained unchanged. The present results indicated that ISSPT-induced inhibition of lung cancer cell proliferation is associated with the blockage of G1/S progression and the induction of apoptosis, and we suggest that ISSPT will be an effective therapeutic agent on human lung cancer.

고량강 추출물의 암세포증식 저해 효과 (Anti-proliferative Effect of the Rhizome Extract of Alpinia officinarum on Cultured Human Tumor Cell Lines)

  • 이호성;차미란;최춘환;최상운;김영섭;김영균;김영호;연규환;유시용
    • 생약학회지
    • /
    • 제39권4호
    • /
    • pp.347-351
    • /
    • 2008
  • The methanol (MeOH) extract of the rhizome of Alpinia officinarum Hance (Zingiberaceae) demonstrated a potent inhibition on the proliferation of cultured human tumor cell lines such as MES-SA (human uterine carcinoma cell line), MESSA/DX5 (multidrug resistant subline of MES-SA), HCT-15 (human colorectal adenocarcinoma cell line), HCT15/CL02 (multidrug resistant subline of HCT15). The MeOH extract was fractionated into four portions by serial solvent partition, ie., methylene chloride (CH2Cl2) soluble part, ethylacetate (EtOAc) soluble part, n-butanol (BuOH) soluble part and remaining water layer. Among them, the $CH_2Cl_2$ soluble part of the extract exhibited a most potent inhibition on the proliferation of tested tumor cell lines. Bioassay-guided fractionation of the $CH_2Cl_2$ soluble part led to the isolation of five diarylheptanoid and two flavonoid constituents, i. e., galangin (1), 7-(4"-hydroxy-3"-methoxyphenyl)-1-phenylhept-4-en-3-one (2), 1,7-diphenyl-5-hydroxy-3-heptanone (3), trans,trans-1-(3'-methoxy-4'-hydroxyphenyl)-7-phenyl-5-ol-4,6-dien-3-heptanone (4), 5-methoxy-7-(4"-hydroxy-3"-methoxyphenyl)-1-phenyl-3-heptanone (5), kaempferide (6), 5-hydroxy-7-(4"-hydroxy-3"-methoxyphenyl)-1-phenyl-3-heptanone (7). Structures of the isolated active components (1 - 7) were established by chemical and spectroscopic means.

인체 전립선 암세포에서 Alkylating Agent인 N-methyl-N'-nitro- N-nitrosoguanidine에 의한 Apoptosis유발 (Induction of Apoptosis by N-methyl-N'-nitro-N-nitrosoguanidine, an Alkylating Agent, in Human Prostate Carcinoma Cells)

  • 박철;최병태;이원호;최영현
    • Toxicological Research
    • /
    • 제19권2호
    • /
    • pp.91-98
    • /
    • 2003
  • Alkylating agents form alkylated base adducts in the DNA and cause DNA lesions leading to cell killing. In this study, we investigated the mechanism of apoptosis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in PC-3 and DU145 human prostate carcinoma cell lines. MNNG treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner to a similar extent in both cell lines. This anti-proliferative effect of PC-3 and DU145 cells by MNNG was associated with morphological changed such as membrane shrinking, cell rounding up and formation of apoptotic bodies. MNNG treatment also induced a proteolytic cleavage of specific target proteins such as poly(ADP-ribose) polymerase (PARP) and $\beta$-catenin proteins in DU145 cells but in PC-3 cells. Furthermore, we observed an increase of proapoptotic protein Bax family expression and a decrease of antiapoptotic protein Bcl-2 family by MNNG treatment in a concentration-dependent manner MNNG also induced a proteolytic activation of caspase-3 and -9, which is believed to play a central role in the apoptotic signaling pathway.

Curcumin Induces Downregulation of E2F4 Expression and Apoptotic Cell Death in H CT116 Human Colon Cancer Cells; Involvement of Reactive Oxygen Species

  • Kim, Kyung-Chan;Lee, Chu-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권6호
    • /
    • pp.391-397
    • /
    • 2010
  • E2F transcription factors and their target genes have been known to play an important role in cell growth control. We found that curcumin, a polyphenolic phytochemical isolated from the plant Curcuma longa, markedly suppressed E2F4 expression in HCT116 colon cancer cells. Hydrogen peroxide was also found to decrease E2F4 protein level, indicating the involvement of reactive oxygen species (ROS) in curucmin-induced downregulation of E2F4 expression. Involvement of ROS in E2F4 downregulation in response to curcumin was confirmed by the result that pretreatment of cells with N-acetylcystein (NAC) before exposure of curcumin almost completely blocked the reduction of E2F4 expression at the protein as well as mRNA level. Anti-proliferative effect of curcumin was also suppressed by NAC which is consistent to previous reports showing curcumin-superoxide production and induction of poly (ADP-ribose) polymerase (PARP) cleavage as well as apoptosis. Expression of several genes, cyclin A, p21, and p27, which has been shown to be regulated in E2F4-dependent manner and involved in the cell cycle progression was also affected by curcumin. Moreover, decreased (cyclin A) and increased (p21 and p27) expression of these E2F4 downstream genes by curcumin was restored by pretreatment of cells with NAC and E2F4 overexpression which is induced by doxycycline. In addition, E2F4 overexpression was observed to partially ameliorate curcumin-induced growth inhibition by cell viability assay. Taken together, we found curcumin-induced ROS down-regulation of E2F4 expression and modulation of E2F4 target genes which finally lead to the apoptotic cell death in HCT116 colon cancer cells, suggesting that E2F4 appears to be a novel determinant of curcumin-induced cytotoxicity.

Suppression of Human Prostate Cancer Cell Growth by β-Lapachone via Down-regulation of pRB Phosphorylation and Induction of Cdk Inhibitor p21WAF1/CIP1

  • Choi, Yung-Hyun;Kang, Ho-Sung;Yoo, Mi-Ae
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.223-229
    • /
    • 2003
  • The product of a tree (Tabebuia avellanedae) from South America, $\beta$-lapachone, is known to exhibit various pharmacological properties, the mechanisms of which are poorly understood. The aim of the present study was to further elucidate the possible mechanisms by which $\beta$-lapachone exerts its anti-proliferative action in cultured human prostate cancer cells. We observed that the proliferation-inhibitory effect of $\beta$-lapachone was due to the induction of apoptosis, which was confirmed by observing the morphological changes and cleavage of the poly(ADP-ribose) polymerase protein. A DNA flow cytometric analysis also revealed that $\beta$-lapachone arrested the cell cycle progression at the G1 phase. The effects were associated with the down-regulation of the phosphorylation of the retinoblastoma protein (pRB) as well as the enhanced binding of pRB and the transcription factor E2F-1. Also, $\beta$-lapachone suppressed the cyclindependent kinases (Cdks) and cyclin E-associated kinase activity without changing their expressions. Furthermore, this compound induced the levels of the Cdk inhibitor $p21^{WAF1/CIP1}$ expression in a p53-independent manner, and the p21 proteins that were induced by $\beta$-lapachone were associated with Cdk2. $\beta$-lapachone also activated the reporter construct of a p21 promoter. Overall, our results demonstrate a combined mechanism that involves the inhibition of pRB phosphorylation and induction of p21 as targets for $\beta$-lapachone. This may explain some of its anticancer effects.

사백산에 의한 인체 폐암세포의 G1기 성장억제기전에 관한 연구 (Cell Cycle Arrest by Sabaek-san is Associated with induction of Cdk Inhibitor p21 in Human Lung Cancer A549 Cells)

  • 강병령;오창선;이재훈;최영현;박동일
    • 동의생리병리학회지
    • /
    • 제16권6호
    • /
    • pp.1177-1183
    • /
    • 2002
  • We investigated the effects of Sabaek-san (SBS) water extract on the cell proliferation of human lung carcinoma A549 cells. SBS treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner. This anti-proliferative effect of A549 cells by SBS treatment was associated with morphological changes such as membrane shrinking and cell rounding up. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by SBS treatment in a concentration-dependent manner. SBS treatment induced a marked accumulation of tumor suppressor p53 and a concomitant induction of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP, which appears to be transcriptionally upregulated and is p53 dependent. In addition, SBS treatment resulted in down-regulation of cyclooxygenase-2 (COX-2) as determined by RT-PCR analysis. The present results indicated that SBS-induced inhibition of lung cancer cell proliferation is associated with the blockage of G1/S progression the induction of apoptosis.

Resveratrol Affects Protein Kinase C Activity and Promotes Apoptosis in Human Colon Carcinoma Cells

  • Fang, Jie-Yu;Li, Zhi-Hua;Li, Qiang;Huang, Wen-Sheng;Kang, Liang;Wang, Jian-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6017-6022
    • /
    • 2012
  • Background: Resveratrol has been reported to have potential chemopreventive and apoptosis-inducing properties in a variety of tumor cell lines. Objective: In this study, to investigate the effects of resveratrol on protein kinase C (PKC) activity and apoptosis in human colon carcinoma cells, we used HT-29 cells and examined the $PKC{\alpha}$ and ERK1/2 signaling pathways. Methods: To test the effects of resveratrol on the growth of HT-29 cells, the cells were exposed to varying concentrations and assessed with the the MTT cell-viability assay. Fluorescence-activated cell sorter (FACS) analysis was applieded to determine the effects of resveratrol on cell apoptosis. Western blotting was performed to determine the protein levels of $PKC{\alpha}$ and ERK1/2. In inhibition experiments, HT-29 cells were treated with G$\ddot{o}$6976 or PD98059 for 30 min, followed by exposure to $200{\mu}M$ resveratrol for 72 h. Results: Resveratrol had a significant inhibitory effect on HT-29 cell growth. FACS revealed that resveratrol induced apoptosis. Western blotting showed that e phosphorylation of $PKC{\alpha}$ and ERK1/2 was significantly increased in response to resveratrol treatment. Pre-treatment with $PKC{\alpha}$ and ERK1/2 inhibitors (G$\ddot{o}$6976 and PD98059) promoted apoptosis. Conclusion: Resveratrol has significant anti-proliferative effects on the colon cancer cell line HT-29. The PKC-ERK1/2 signaling pathway can partially mediate resveratrol-induced apoptosis of HT-29 cells.

Blocking Bcl-2 Leads to Autophagy Activation and Cell Death of the HEPG2 Liver Cancer Cell Line

  • Du, Peng;Cao, Hua;Wu, Hao-Rong;Zhu, Bao-Song;Wang, Hao-Wei;Gu, Chun-Wei;Xing, Chun-Gen;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5849-5854
    • /
    • 2013
  • Background: Apoptosis may be induced after Bcl-2 expression is inhibited in proliferative cancer cells. This study focused on the effect of autophagy activation by ABT737 on anti-tumor effects of epirubicin. Methods: Cytotoxic effects of ABT737 on the HepG2 liver cancer cell line were assessed by MTT assay and cell apoptosis through flow cytometry. Mitochondrial membrane potential was measured by fluorescence microscopy. Monodansylcadaverin (MDC) staining was used to detect activation of autophagy. Expression of p53, p62, LC3, and Beclin1, apoptotic or autophagy related proteins, was detected by Western blotting. Results: ABT737 and epirubicin induced growth inhibition in HepG2 cells in a dose- and time-dependent manner. Both ABT737 and epirubicin alone could induce cell apoptosis with a reduction in mitochondrial membrane potential as well as increased apoptotic protein expression. Further increase of apoptosis was detected when HepG2 cells were co-treated with ABT373 and epirubicin. Furthermore, our results demonstrated that ABT373 or epirubicin ccould activate cell autophagy with elevated autophagosome formation, increased expression of autophagy related proteins and LC3 fluorescent puncta. Conclusions: ABT737 influences cancer cells through both apoptotic and autophagic mechanisms, and ABT737 may enhance the effects of epirubicin on HepG2 cells by activating autophagy and inducing apoptosis.