• Title/Summary/Keyword: Anti-oxidant Effect

Search Result 646, Processing Time 0.022 seconds

Fourier Transform Ion Cyclotron Resonance (FT-ICR) MASS Spectrophotometric Analysis of Flower Petal from Paeonia lactiflora cv. ‘Red Charm’ and Evaluation of its Functional Activity (작약 레드참 꽃잎의 이온화원-푸리에 변환 질량분석과 기능성 연구)

  • Kim, June Hyun;Choi, Yong Bock;Lee, Ha Jung;Kim, Yong Hee;Kim, Jun Huan;Sim, Jung Min;Sohn, Young-Sun
    • Korean Journal of Plant Resources
    • /
    • v.29 no.5
    • /
    • pp.588-597
    • /
    • 2016
  • Little attention has been paid to the functional aspect of the flower petal of Paeonia lactiflora, compared to that of its root. To determine the components of flower petal of Paeonia lactiflora, we conducted the Fourier transform ion cyclotron resonance (FT-ICR) MASS spectrophotometric analysis. We detected the 24 different types of ingredients from the 70% ethanol extracts of flower petal of peonia lactiflora cv. ‘Red Charm’. The main compounds were quercetin glucopyranosides, methyl gallate, paonioflolol and kaemperol glucopyranosides. We further tested its functional activity. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the extracts was 87.9-90.4% at 0.1mg/ml. This result showed that these flower extracts have approximately 5-fold stronger antioxidant potential than a previous report with root extracts (Bang et al. 1999). The result of tyrosinase inhibition assay of Paeonia lactflora extract was almost similar to that of arbutin except significantly higher effect in the coral sunset extract at 0.1% concentration. Hyaluronidase inhibition assay showed 76.5% inhibition at 5% concentration of this flower extract, indicating that Peaonia lactiflora flower extracts have the major anti-inflammatory, anti-oxidant and brightening effects. Taken together, these results suggest these three Paeonia lactiflora species extracts might provide the basis to develop a new natural brightening agent.

Effect of Microalgal Extracts of Tetraselmis suecica against UVB-Induced Photoaging in Human Skin Fibroblasts

  • Jo, Wol Soon;Yang, Kwang Mo;Park, Hee Sung;Kim, Gi Yong;Nam, Byung Hyouk;Jeong, Min Ho;Choi, Yoo Jin
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.241-248
    • /
    • 2012
  • Exposure of cells to ultraviolet B (UVB) radiation can induce production of free radicals and reactive oxygen species (ROS), which damage cellular components. In addition, these agents can stimulate the expression of matrix metalloproteinase (MMP) and decrease collagen synthesis in human skin cells. In this study, we examined the anti-photoaging effects of extracts of Tetraselmis suecica (W-TS). W-TS showed the strongest scavenging activity against 2,2-difenyl-1-picrylhydrazyl (DPPH) and peroxyl radicals, followed by superoxide anions from the xanthine/xanthine oxidase system. We observed that the levels of both intracellular ROS and lipid peroxidation significantly increased in UVB-irradiated human skin fibroblast cells. Furthermore, the activities of enzymatic antioxidants (e.g., superoxide dismutase) and the levels of non-enzymatic antioxidants (e.g., glutathione) significantly decreased in cells. However, W-TS pretreatment, at the maximum tested concentration, significantly decreased intracellular ROS and malondialdehyde (MDA) levels, and increased superoxide dismutase and glutathione levels in the cells. At this same concentration, W-TS did not show cytotoxicity. Type 1 procollagen and MMP-1 released were quantified using RT-PCR techniques. The results showed that W-TS protected type 1 procollagen against UVB-induced depletion in fibroblast cells in a dose-dependent manner via inhibition of UVB-induced MMP-1. Taken together, the results of the study suggest that W-TS effectively inhibits UVB-induced photoaging in skin fibroblasts by its strong anti-oxidant ability.

Effect of Neurogranin Phosphorylation on Oxidative Stress by Hydrogen Peroxide in Early Onset of Batten Disease (과산화수소에 의한 산화스트레스가 영아형 바텐병에서 neurogranin의 인산화에 미치는 영향)

  • Yoon, Dong-Ho;Kim, Han-Bok;Park, Joo-Hoon;Kim, Sung-Jo
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.520-525
    • /
    • 2009
  • Early onset of Batten disease (EBD), one of the most lethal neurodegenerative storage disorders of childhood, is caused by inactivating mutations in the Ceroid Lipofuscinosis, Neuronal (CLN1) gene. Neurogranin, a calmodulin-binding protein, is expressed in the brain and participates in the protein kinase C (PKC) signaling pathway. While oxidative stress is the suggested cause of neurodegeneration in EBD, its molecular mechanism(s) remains obscure. In this research, we examined the levels of neurogranin in the brain mRNA of wild-type (WT) mice and EBD knockout (KO) mice, as well as the proteins. We also performed neuronal cultures to measure the expression levels of neurgranin and phosphorylated-neurogranin with or without oxidative stress inducers and anti-oxidants. Results showed that neurogranin in both EBD KO mice brain mRNA and protein extracts decreased in an age dependent manner. However, high amounts of phosphorylated-neurogranin were detected in the 6-month brain. This pattern was also confirmed by cultured neurospheres samples. Moreover, neurospheres treated with $H_2O_2$, an oxidative stress inducer, showed increased phosphorylated-neurogranin patterns. Interestingly, this pattern returned to normal status when treated with N-acetyl-L-cystein, an anti-oxidant, after $H_2O_2$ treatment was performed. Our results suggest that the phosphorylation of neurogranin is affected by oxidative stress status in EBD, and appropriate anti-oxidant treatment will relieve hyper-phosphorylation of neurogranin.

Antioxidant and Anti-Inflammatory Activities of Crude Extract and Solvent Fractions of Allium hookeri (삼채의 조추출물과 유기용매 분획물에 대한 항산화 및 항염증 효과)

  • Lee, Yong-Bum;Ham, Young-Min;Yoon, Seon-A;Oh, Dae-Ju;Song, Sang-Mok;Hong, In-Choel;Lee, Si Taek;Hyun, Ho Bong;Kim, Chang-Suk;Yoon, Weon-Jong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • This study describes the preliminary evaluation of antioxidant and anti-inflammatory activities of Allium hookeri. A. hookeri was extracted using crude extract and then fractionated sequentially with n-hexane, $CH_2Cl_2$, EtOAc, and n-BuOH. To screen for antioxidant and anti-inflammatory agents effectively, we first examined the inhibitory effect of A. hookeri extracts on production of oxidant stresses (2,2-diphenyl-1-picrylhydrazyl, xanthine oxidase, and superoxide). In addition, we examined the inhibitory effects of A. hookeri on production of pro-inflammatory factors (nitric oxide, prostaglandin $E_2$, inducible nitric oxide synthase, and cyclooxygenase-2) in murine macrophage RAW 264.7 cells stimulated with lipopolysaccharide. Of the sequential solvent fractions of A. hookeri, EtOAc fractions showed decreased production of oxidant stresses, and $CH_2Cl_2$ and EtOAc fractions of A. hookeri inhibited production of pro-inflammatory factors. EtOAc fraction inhibited production of pro-inflammatory cytokines (interleukin-6 and -$1{\beta}$). These results suggest that A. hookeri has significant effects on oxidant stresses and pro-inflammatory factors and is a possible antioxidant and anti-inflammatory therapeutic and preventive material.

Antioxidant Activity of Solvent Fractions from Distylium racemosum in Jeju (제주 자생 조록나무 분획물의 항산화 효과)

  • Kim, Hye-Ran;Park, Gyu-Nam;Jung, Bo-Kyoung;Yoon, Weon-Jong;Jung, Yong-Hwan;Chang, Kyung-Soo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.62-67
    • /
    • 2016
  • Anti-oxidant activity of 600 medicinal plants from Jeju was analyzed. Extracts from the leaves of Distylium racemosum have the highest anti-oxidant activity. D. racemosum is an oriental medicinal plant belonging to the Hamamelidacea and grows in the wild in Jeju. This study was conducted to evaluate the antioxidant and cell viability of different fractions (n-hexane, methylene chloride, ethyl acetate, buthanol, DW) from D. racemosum. Anti-oxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity test and total phenolic content. Cell viability was determined by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) cell viability assay on HepG2 and A549 cells. Among various extracts, the ethyl acetate fraction showed the highest DPPH radical scavenging activity, reaching approximately 93% at 0.5 mg/mL, higher than that of quercetin used as a positive control. Ethyl acetate fractions showed the highest total phenolic content at 505 mg GAE/g. The phenolic content of each extract showed association with DPPH radical scavenging activity. The ethyl acetate extracts were resistant against hydrogen peroxide ($H_2O_2$) treatment in the MTT cell viability assay and showed a higher cell protective effect than other fraction extracts. These results suggest that the ethyl acetate fraction might be a source of anti-oxidants of D. racemosum.

Antioxidant effect of ethanol extract from Plantaginis Herba (차전초 에탄올 추출물의 항산화 효능)

  • Kim, Yoo-Jin;Kim, So Young;Jeong, Mi Jin;Lee, Un-Tak;Choo, Sung-Tae;Youn, Seok Na;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.33 no.3
    • /
    • pp.37-43
    • /
    • 2018
  • Objectives : Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) were well known as anti-oxidant, but they were limited to use because of toxicity. So, many studies are being done to develope natural anti-oxidant. Total phenolic and flavonoid contents along with total antioxidant capacity of the ethanolic extract of Plantaginis Herba (PH) were evaluated to explore the reliable and potential sources of novel natural antioxidants. Methods : Total polyphenol contents and total flavonoid contents in PH ethanol extract were determined by colorimetric method. And DPPH(1.1-diphenyl-2-picrylhydrazyl), ABTS(2'-azino-bis (3-ethylbenzothiazoline-6-Surfonicacid)) free radical scavenging capacity and reducing power inhibition activities of PH ethanol extract were measured at 100, 500, 1000, $5000{\mu}g/m{\ell}$ concentrations by spectrometric assay. Results : The total polyphenol contents and total flavonoid contents of the extract were 161.99 mg/g, 144.05 mg/g, respectively. Also, DPPH, ABTS free radical scavenging capacity and reducing power of PH ethanol extract in treated concentrations (100, 500, 1000, $5000{\mu}g/m{\ell}$) increased dose dependently. In particular, DPPH free radical scavenging capacity of PH ethanol extract from $500{\mu}g/m{\ell}$ was significantly increased compared to positive control (BHA). ABTS free radical scavenging capacity of PH ethanol extract from $1000{\mu}g/m{\ell}$ was significantly higher than BHA. Also, reducing power showed that PH ethanol extract from $500{\mu}g/m{\ell}$ was significantly increased compared to BHA. Conclusions : These results suggest that PH ethanol extract has effects to scavenge free radicals, thus PH has potential and applicable benefits for development of materials and products to have anti-oxidation functions.

Anti-oxidative Effect of Sapindus mukorossi Fruits Extract in LPS-stimulated macrophages via Activation of Nrf2/HO-1 pathway (LPS가 처리된 대식세포에서 Nrf2/HO-1 경로 활성을 통한 무환자나무 열매 추출물의 항산화 효과)

  • Kim, Dae-Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1306-1313
    • /
    • 2020
  • The aims of this study were to determine the effects of Sapindus mukorossi fruit extracts (SME) on the anti-oxidant activity in LPS-stimulated RAW264.7 macrophages. The results showed that SME significantly reduced the production of ROS in LPS-stimulated RAW264.7 cells. The expression of pro-inflammatory proteins including COX-2 and iNOS were also obviously inhibited by SME in LPS-stimulated RAW264.7 cells. Further studies revealed that SME up-regulated HO-1 and Nrf2 expression. Additionally, SME increased phosphorylation of Akt and GSK-3β. These results suggest that SME could attenuate oxidative stress by activating the Nrf2/HO-1 signaling pathway.

Chemical Constituents from the Stems of Lagerstroemia indica and Their Anti-oxidant Effect (배롱나무의 항산화 활성 성분)

  • Woo, Kyeong Wan;Sim, Mi Ok;Park, Eel Jong;Kim, Min Suk;Suh, Won Se;Cho, Hyun Woo;Kwon, Hak Cheol;Park, Jong Cheol;Lee, Kang Ro
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.3
    • /
    • pp.204-210
    • /
    • 2016
  • Phytochemical investigation of the 80% MeOH extract from the stems of Lagerstroemia indica resulted in the isolation of eighteen compounds; four norsesquiterpenes, fourteen phenolic derivatives. Their chemical structures were characterized by spectroscopic methods to be tachioside (1), isotachioside (2), 2,4,6-trimethoxyphenyl ${\beta}$-D-glucopyranoside (3), gallic acid 4-methyl ether (4), protocatechuic acid (5), gallic acid (6), vanillic acid (7), vanillin (8), 2-methoxy-5-hydroxymethyl-phenyl-1-O-(6"-galloyl)-${\beta}$-D-glucopyranoside (9), 2,4,6-trimethoxyphenol-1-O-${\beta}$-D-(6'-O-galloyl)-glucopyranoside (10), 4-hydroxy-3-methoxyphenyl-1-O-(6'-O-galloyl)-${\beta}$-D-glucopyranoside (11), vomifoliol (12), vomifoliol 9-O-${\beta}$-D-glucopyranoside (13), 6R,9R-3-oxo-${\alpha}$-ionol-9-O-${\beta}$-D-glucopyranoside (14), dihydrophaseic acid 4'-O-${\beta}$-D-glucopyranoside (15), ${\beta}$-hydroxypropiovanillone 3-O-${\beta}$-D-glucopyranoside (16), myrciaphenone A (17), and coumaric acid (18). Compounds 1-5 and 7-18 were isolated for the first time from this plant. Compounds 1-18 were investigated for their antioxidant properties using DPPH and ABTS radical scavenging capacity assay, $Fe^{2+}$ chelating, and FRAP assay. It was found that 4, 6, and 11 possessed the highest antioxidant capacities.

Effect of SHT on the anti-oxidant activity and atopic dermatitis related inflammatory cytokines (석자해기탕(石紫解肌湯)이 아토피피부염 유관 인자인 산화적 손상과 염증 인자에 미치는 영향)

  • Jung, Dae-Woong;Choi, Hak-Joo;Gim, Seon-Bin;Lee, Ki-Moo;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.20 no.2
    • /
    • pp.53-65
    • /
    • 2012
  • In order to investigate the possibility of SHT as therapeutic for the treatment of atopic dermatitis (AD), cytotoxicity, anti-oxidant activity, modulatory and suppression activities of SHT were tested. 90% or higher cell viability was observed in all tested groups from 25 to 200 ug/ml using Raw 264.7 cells. SHT showed dose-dependent DPPH scavenging activity, with more than 80% scavenging activities at 400 and 800 ug/ml concentrations. SHT showed dose-dependent suppression activity of ROS production, especially at 200 ug/ml of 57.4%. SHT decreased NO production activity dose dependently, expecially at 200 ug/ml of 28.8%. IL-$1{\beta}$, IL-6, MCP-1, TNF-${\alpha}$ production rate were decreased by 45.7%, 15.5%, 8.9%, 16.5% respectively when Raw 264.7 cells were treated with LPS and with SHT of 200 ug/ml. However, only IL-6 and TNF-${\alpha}$ showed significant changes. The results above indicate that SHT significantly reduces the effect of oxidative and inflammatory cytokines. The use of SHT in dermatitis can be widely suggested.

Anti-Wrinkling Effect of Noni (Morinda citrifolia) by Antioxidant and Anti-Inflammatory Properties

  • Choi, Soo-Cheol;Youn, Young Han
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.2
    • /
    • pp.191-199
    • /
    • 2020
  • Noni has been used for medicinal purposes for more than 2,000 years in South Pacific Polynesia, China and India, and has been heavily ingested as an extract for its excellent antioxidant and anti-inflammatory effects. However, a recent study found that the noni extract causes digestive disorders, kidney problems, and liver diseases, which made it necessary to use it for other purposes than as an extract. In this study, we want to evaluate the potential of noni as an anti-oxidant, anti-inflammatory and anti-wrinkling agent. Methods: Noni was freeze-dried, extracted in water, and concentrated. Skin cells were treated with the noni extract for 24 hrs and then were exposed to UVB (55 mJ/cm2). After 48 hrs of incubation, pro-inflammatory cytokine, elastase, MMP-1 and type-1 procollagen levels were measured by ELISA. Results: To find out the antioxidant effect of the noni extract, the DPPH and ABTS radical scavenging activity experiments were conducted and the noni extract showed 97.0 % and 92.0 % antioxidant efficacy at 200 ㎍/mL respectively. The noni extract (50 and 100 ㎍/mL) decreased IL-6 and TNF-α in RAW 264.7 cells induced by LPS in a concentration-dependent manner. In the RT-PCR experiment involving NO production, the noni extract (50 and 100 ㎍/mL) inhibited NO production by strongly inhibiting iNOS mRNA expression, and also inhibited the elevation of MMP-1 and elastases caused by UVB irradiation by 25.0 % and 7.0 % respectively. In addition, type-1 procollagen was elevated by 20.0 % by the noni extract treatment in HaCaT cells. Conclusion: The noni extract has photoprotective ability by reducing proinflammatory mediators, elastase and MMP-1 production, and elevation of collagen synthesis. Our findings suggest that the noni extract might be a good natural substance to protect against UVB-induced premature skin aging.