Browse > Article

Chemical Constituents from the Stems of Lagerstroemia indica and Their Anti-oxidant Effect  

Woo, Kyeong Wan (Natural Product Laboratory, School of Pharmacy, Sungkyunkwan University)
Sim, Mi Ok (Traditional Korean Medicines Research Team, Naional Development Institute of Korea Medicine)
Park, Eel Jong (Traditional Korean Medicines Research Team, Naional Development Institute of Korea Medicine)
Kim, Min Suk (Traditional Korean Medicines Research Team, Naional Development Institute of Korea Medicine)
Suh, Won Se (Natural Product Laboratory, School of Pharmacy, Sungkyunkwan University)
Cho, Hyun Woo (Traditional Korean Medicines Research Team, Naional Development Institute of Korea Medicine)
Kwon, Hak Cheol (Natural Product Research Center, Korea Institute of Science and Technology)
Park, Jong Cheol (Department of Oriental Medicine Resources, Sunchon National University)
Lee, Kang Ro (Natural Product Laboratory, School of Pharmacy, Sungkyunkwan University)
Publication Information
Korean Journal of Pharmacognosy / v.47, no.3, 2016 , pp. 204-210 More about this Journal
Abstract
Phytochemical investigation of the 80% MeOH extract from the stems of Lagerstroemia indica resulted in the isolation of eighteen compounds; four norsesquiterpenes, fourteen phenolic derivatives. Their chemical structures were characterized by spectroscopic methods to be tachioside (1), isotachioside (2), 2,4,6-trimethoxyphenyl ${\beta}$-D-glucopyranoside (3), gallic acid 4-methyl ether (4), protocatechuic acid (5), gallic acid (6), vanillic acid (7), vanillin (8), 2-methoxy-5-hydroxymethyl-phenyl-1-O-(6"-galloyl)-${\beta}$-D-glucopyranoside (9), 2,4,6-trimethoxyphenol-1-O-${\beta}$-D-(6'-O-galloyl)-glucopyranoside (10), 4-hydroxy-3-methoxyphenyl-1-O-(6'-O-galloyl)-${\beta}$-D-glucopyranoside (11), vomifoliol (12), vomifoliol 9-O-${\beta}$-D-glucopyranoside (13), 6R,9R-3-oxo-${\alpha}$-ionol-9-O-${\beta}$-D-glucopyranoside (14), dihydrophaseic acid 4'-O-${\beta}$-D-glucopyranoside (15), ${\beta}$-hydroxypropiovanillone 3-O-${\beta}$-D-glucopyranoside (16), myrciaphenone A (17), and coumaric acid (18). Compounds 1-5 and 7-18 were isolated for the first time from this plant. Compounds 1-18 were investigated for their antioxidant properties using DPPH and ABTS radical scavenging capacity assay, $Fe^{2+}$ chelating, and FRAP assay. It was found that 4, 6, and 11 possessed the highest antioxidant capacities.
Keywords
Lythraceae; Lagerstroemia indica; Norsesquiterpene; Phenol; Anti-oxidant effect;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Zhang, H. M., Wang, C. F., Shen, S. M., Wang, G. L., Liu, P., Liu, Z. M., Wang, Y. Y., Du, S. S., Liu, Z. L. and Deng, Z. W. (2012) Antioxidant phenolic compounds from Pu-erh tea. Molecules 17:14037-14045.   DOI
2 Sun, L. X., Fu, W., Ren, J., Xu, L., Bi, K. S. and Wang, M. W. (2006) Cytotoxic constituents from Solanum lyratum. Arch. Pharm. Res. 29: 135-139.   DOI
3 Kim, H., Yi, J. M., Kim, N. S., Lee, Y. J., Kim, J., Oh, D. S., Oh, S. M., Bang, O. S. and Lee, J. Cytotoxic compounds from the fruit of Vitex rotundifolia against human cancer cell lines. J. Korean Soc. Appl. Biol. Chem. 55: 433-437.
4 De Leo, M., Braca, A., De Tommasi, N., Norscia, I., Morelli, I., Battinelli, L. and Mazzanti, G. (2004) Phenolic compounds from Baseonema acuminatum leaves: isolation and antimicrobial activity. Planta Med. 70: 841-846.   DOI
5 Saijo, R., Nonaka, G. and Nishioka, I. (1989) Tannins and related compounds. Part 82. Phenol glucoside gallates from Mallotus japonicas. Phytochemistry 28: 2443-2446.   DOI
6 Ishimaru, K., Nonaka, G. and Nishioka, I. (1987) Tannins and related compounds. Part 54. Phenolic glucoside gallates from Quercus mongolica and Q. acutissima. Phytochemistry 26: 1147-1152.   DOI
7 Kuang, H., Yang, B., Xia, Y. and Feng, W. (2008) Chemical constituents from the flower of Datura metel L.. Arch. Pharm. Res. 31: 1094-1097.   DOI
8 Champavier, Y., Comte, G., Vercauteren, J., Allais, D. P. and Chulia, A. J. (1999) Norterpenoid and sesquiterpenoid glucosides from Juniperus phoenicea and Galega officinalis. Phytochemistry 80: 1219-1223.
9 Lee, K. R., Hong, S. W., Kwak, J. H., Pyo, S. and Jee, O. P. (1996) Phenolic constituents from the aerial parts of Artemisia stolonifera. Arch. Pharm. Res. 19: 231-234.   DOI
10 Lee, S. Y., Choi, S. U., Lee, J. H., Lee, D. U. and Lee, K. R. (2010) A new phenylpropane glycoside from the rhizome of Sparganium stoloniferum. Arch. Pharm. Res. 33: 515-521.   DOI
11 Reis, F. S., Martins, A., Barros, L. and Ferreira, I.C. (2012) Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food. Chem. Toxicol. 50: 1201-1207.   DOI
12 Kim, H. Y., Lee, Y. A. and Cho, E. J. (2012) Free radical scavenging effect and protective activity from oxidative stress of broccoli flowers and sprouts. CNU J. Agric. Sci. 39: 81-86.   DOI
13 Sakanaka, S., Tachibana, Y. and Okada, Y. (2005) Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). J. Food Chem. 89: 569-575.   DOI
14 Kim, H. J., Lee, I. S., Youn, U. J., Chen, Q. C., Ngoc, T. M., Ha, D. T., Liu, H., Min, B. S., Lee, J. Y., Seong, R. S. and Bae, K. H. (2009) Biphenylquinolizidine alkaloids from Lagerstroemia indica. J. Nat. Prod. 72: 749-752.   DOI
15 Xiang, Y., Yang, S., Zhan, Z. and Yue, J. (2004) Terpenoids and phenols from Taiwania flousiana. Acta. Bot. Sin. 46: 1002-1008.
16 Lee, B. G., Kim, J. H., Ham, S. G. and Lee, C. E. (2014) Study on biological activities of extracts for cosmeceutical development from Lagerstroemia indica L. branch. Korean J. Plant Res. 27: 29-34.   DOI
17 이창복 (2003) 원색대한식물도감, 789, 향문사, 서울.
18 Lee, I. S., Youn, U. J., Kim, H. J., Min, B. S., Kim, J. S. and Bae, K. H. (2011) Biphenyl and biphenyl ether quinolizidine N-oxide alkaloids from Lagerstroemia indica L. Planta Med. 77: 2037-2041.   DOI
19 Woo, K. W., Suh, W. S., Subedi, L., Kim, S. Y., Choi, S. U., Kim, K. H. and Lee, K. R. (2015) Phenolic derivatives from the stems of Lagerstroemia indica and their biological activity. Heterocycles 91: 2355-2366.   DOI
20 Woo, K. W., Cha, J. M., Choi, S. U. and Lee, K. R. (2016) A new triterpene glycoside from the stems of Lagerstroemia indica. Arch. Pharm. Res. 39: 631-635.   DOI
21 Cho, H. K., Suh, W. S., Kim, K. H., Kim, S. Y. and Lee, K. R. (2014) Phytochemical constituents of Salsola komarovii and their effects on NGF induction. Nat. Prod. Sci. 20: 95-101.
22 Chang, R., Wang, C., Zeng, Q., Guan, B., Zhang, W. and Jin, H. (2013) Chemical constituents of the stems of Celastrus rugosus. Arch. Pharm. Res. 36: 1291-1301.   DOI
23 Chaubal, R., Mujumdar, A. M., Misar, A. and Deshpande, N. R. (2005) Isolation of phenolic compounds from Acacia nilotica with topical antiinflammatory activity. Asian J. Chem. 17: 1595-1599.
24 Lee, S. Y., Kim, K. H., Lee, I. K., Lee, K. H., Choi, S. U. and Lee, K. R. (2012) A new flavonol glycoside from Hylomecon vernalis. Arch. Pharm. Res. 35: 415-421.   DOI