• 제목/요약/키워드: Anti-inflammatory factor

검색결과 1,520건 처리시간 0.032초

Effect of Lactobacillus Fermentation on the Anti-Inflammatory Potential of Turmeric

  • Yong, Cheng Chung;Yoon, Yonghee;Yoo, Hee Sub;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1561-1569
    • /
    • 2019
  • Curcumin, the major bioactive constituent of turmeric, has been reported to have a wide range of pharmacological benefits; however, the low solubility in water has restricted its systemic bioavailability and therapeutic potential. Therefore, in the current study, we aimed to investigate the effect of turmeric fermentation on its curcumin content and anti-inflammatory activity by using several lactic acid bacteria. Fermentation with Lactobacillus fermentum significantly increased the curcumin content by 9.76% while showing no cytotoxicity in RAW 246.7 cells, as compared to the unfermented turmeric, regardless of the concentration of L. fermentum-fermented turmeric. The L. fermentum-fermented turmeric also promoted cell survival; a significantly higher number of viable cells in lipopolysaccharide (LPS)-induced RAW 264.7 cells were observed as compared to those treated with unfermented turmeric. It also displayed promising DPPH scavenging ($7.88{\pm}3.36%$) and anti-inflammatory activities by significantly reducing the nitrite level and suppressing the expression of the pro-apoptotic tumor necrosis factor-alpha and Toll-like receptor-4 in LPS-induced RAW 264.7 cells. Western blot analysis further revealed that the anti-inflammatory activity of the fermented turmeric was exerted through suppression of the c-Jun N-terminal kinase signal pathway, but not in unfermented turmeric. Taken together, the results suggested that fermentation with lactic acid bacteria increases the curcumin content of turmeric without increasing its cytotoxicity, while strengthening the specific pharmacological activity, thus, highlighting its potential application as a functional food ingredient.

리보플라빈의 염증성 장질환 개선 효과 (Beneficial Effects of Riboflavin on Inflammatory Bowel Disease)

  • 이상희;홍선미;성미정
    • 한국식생활문화학회지
    • /
    • 제39권1호
    • /
    • pp.74-81
    • /
    • 2024
  • Ulcerative colitis (UC) is a chronic inflammatory intestinal disease characterized by an imbalance in immune function and the overexpression of inflammatory cytokines and mediators. Vitamin B2, also known as riboflavin (Libof), is an essential water-soluble vitamin with numerous beneficial properties, including antioxidant, anti-aging, anti-inflammatory, anti-nociceptive, and anti-cancer effects. In this study, we aimed to investigate the protective effects of Libof on dextran sulfate sodium (DSS)-induced experimental colitis. The C57BL/6 mice were used as the in vivo model of chronic colitis to investigate the anti-inflammatory effects of Libof. RAW 264.7 cells were used for the in vitro investigation of the molecular mechanisms underlying these effects. In vivo, Libof alleviated the DSS-induced disease activity index (DAI), colon length shortening, and colonic pathological damage. In vitro, Libof inhibited lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 production in RAW 264.7 cells. Moreover, Libof inhibited LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. In conclusion, these findings indicate that Libof shows potential as an agent for the treatment of UC.

LPS로 유도된 RAW 264.7 세포에 대한 가락진두발 에탄올 추출물의 항염증 효과 (Anti-Inflammatory Effect of Chondrus nipponicus Yendo Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells)

  • 김민지;배난영;김꽃봉우리;박지혜;박선희;장미란;안동현
    • 한국식품영양과학회지
    • /
    • 제45권2호
    • /
    • pp.194-201
    • /
    • 2016
  • 본 연구에서는 lipopolysaccharide(LPS)로 자극한 마우스 대식세포인 RAW 264.7 세포에서 가락진두발 에탄올 추출물(CNYEE)의 항염증 효과를 알아보기 위하여 nitric oxide(NO)와 pro-inflammatory cytokine의 분비량을 확인하였다. 그 결과 CNYEE 모든 농도에서 LPS만을 처리한 대조군과 비교하였을 때 유의성 있게 NO와 pro-inflammatory cytokine의 분비량을 저해하였으며, 특히 $100{\mu}g/mL$ 농도에서는 IL-6의 분비량을 70% 이상 억제하였고, TNF-${\alpha}$ 및 IL-$1{\beta}$의 분비량은 50% 이상의 억제 효과를 나타내었다. CNYEE에 의한 염증매개물질의 분비 감소가 전사인자인 nuclear factor-${\kappa}B$(NF-${\kappa}B$)의 핵 내 전이 pathway를 저해함으로써 나타난 결과인지 확인하기 위하여 iNOS, COX-2 및 NF-${\kappa}B$ p65의 단백질 발현량을 관찰한 결과, 비교적 낮은 농도인 $50{\mu}g/mL$에서 40% 이상의 저해능을 보인 것으로 보아 NO와 cytokine의 분비 억제 결과가 NF-${\kappa}B$ pathway를 저해함으로써 나타난 것임을 유추할 수 있었다. 또한 LPS에 의해 증가한 mitogen-activated protein kinases의 인산화를 확인한 결과, CNYEE 처리에 의해 농도 의존적으로 유의성 있게 저해되었다. 이러한 결과를 종합해볼 때 가락진두발 에탄올 추출물은 염증매개물질의 분비를 효과적으로 저해함으로써 추후 천연물로서 염증 치료제의 개발이 가능할 것으로 생각한다.

RAW 264.7 대식세포에서 청뇌명신환(淸腦明神丸)에 의한 염증성 및 산화적 스트레스 반응 억제 효능 (Anti-inflammatory and Antioxidant Effects of Cheongnoimyungshin-hwan in RAW 264.7 Macrophages)

  • 손변우;이명화;황원덕
    • 대한한의학방제학회지
    • /
    • 제26권1호
    • /
    • pp.1-12
    • /
    • 2018
  • Objectives : Cheongnoimyungshin-hwan (CNMSH) is a Herbal compound prescription that is composed mainly of herbal medicines such as Ginseng Radix Alba, Angelicae Gigantis Radix, Dioscoreae Rhizoma, Longan Arillus and cornus cervi parvum, and for the purpose of improving memory and preventing dementia. Methods : In this study, it was investigated whether CNMSH could suppress inflammatory response and oxidative stress in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. As a result, CNMSH decreased expression of inducible nitric oxide (NO) synthase and cyclooxygenase-2, and also inhibited production of NO, prostaglandin E2. Results : This effect was associated with the suppression of the expression of p65, one of the nuclear factor-kappaB ($NF-{\kappa}B$) subunits, and increased expression of $I{\kappa}B-{\alpha}$, inhibit the $NF-{\kappa}B$ transcription factor. In addition, CNMSH significantly blocked intracellular reactive oxygen species accumulation in response to LPS stimulation. Furthermore, CNMSH increased expression of nuclear factor erythroid 2-related factor (Nrf)-2 activation and heme oxygenase (HO)-1. Conclusions : Therefore, it has been shown anti-inflammatory and antioxidant effects by inhibiting the expression and production of inflammatory mediators in LPS-stimulated macrophages, and is associated with ROS generation and is activated by Nrf2/HO-1 signaling pathway.

오미소독음(五味消毒飮)의 항염효과(抗炎效果) 및 기전(機轉)에 관(關)한 실험적연구(實驗的硏究) (Anti-inflammatory Effects of Omisodokeum)

  • 서윤정;김송백;조한백;최창민;이순이
    • 대한한방부인과학회지
    • /
    • 제21권1호
    • /
    • pp.39-54
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the anti-inflammatory effects of the water extract of Omisodokeum (OMSDE) on peritoneal macrophages, Methods: To verify the anti-inflammatory mechanism of OMSDE, the activation of nuclear $factor-{\kappa}B$ $(NF-{\kappa}B)$ and the phosphorylation of MAPK were examined. Results: The extract of OMSDE suppressed the production of LPS-induced nitric oxide (NO), tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6 and IL-12 in the macrophages. OMSDE inhibited the degradation of inhibitory ${\kappa}B-{\alpha}$ $(I{\kappa}B-{\alpha})$ and it suppressed the activation of extracellular signal-regulated kinase (ERK 1/2) but didn't inhibit c-Jun N-terminal kinase (JNK) and p38, indicating that OMSDE may inhibit the pro-inflammatory cytokine production process by inhibiting the activation of $NF-{\kappa}B$ and ERK 1/2. Furthermore, OMSDE inhibited the production of interferon $(IFN)-{\beta}$ but didn't inhibit of $IFN-{\alpha}$ in the LPS-stimulated macrophages through the down-regulation of interferon regulatory factor (IRF)-1 and IRF-7. The Oral administration of OMSDE inhibited LPS-induced endotoxin shock and the production of $TNF-{\alpha}$ in serum but didn't inhibit of $IL-1{\beta}$ and IL-6. Conclusion: These results suggest that OMSDE may be effective in the prevention and treatment of inflammatory diseases.

  • PDF

연교(連翹)와 금은화(金銀花) 에탄올 추출물의 항염증 효능 연구 (Research of the Anti-inflammatory Effects of Forsythiae Fructus and Lonicerae Flos Ethanol Extracts)

  • 류효경;정민재;최유진;양승정;조성희
    • 대한한방부인과학회지
    • /
    • 제33권3호
    • /
    • pp.40-59
    • /
    • 2020
  • Objectives: The purpose of this study was to investigate the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos in vitro, which has been frequently used in inflammatory diseases. Methods: In this experiment, the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos were evaluated by checking the following substances of LPS-activated Raw264.7 cell: Prostaglandin E2 (PGE2), Nitric oxide (NO), Cyclooxygenase-2 (COX-2), inducible Nitric oxide synthase (iNOS), Interlukine-1β (IL-1β), Interlukine-6 (IL-6), Tumor necrosis factor-α (TNF-α), mitogen-activated protein kinase (MAPK), Inhibitor of kappa B-α (IκBα), Nuclear factor kappa B (NF-κB). And additionally measured reactive oxygen species (ROS) and free radicals to check the antioxidant effect of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos which affect inflammatory responses. Results: As a result of measuring anti-inflammatory efficacy, PGE2, NO, IL-1β, IL-6, TNF-α production amounts were reduced in the ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos groups compared with the control group, and decreased the amount of COX-2 mRNA, iNOS mRNA gene expression. Expression of MAPK (ERK, JNK, p38) pathway was decreased. Expression of IκBα was increased and NF-κB was decreased. It is demonstrated that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos, by reducing NF-κB, regulate the expression of the inflammatory genes and reduce the inflammatory mediators. Ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos also decreased ROS production and free radicals, which shown to have antioxidant efficacy and influence anti-inflammatory effects. Conclusions: These data suggest that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos can be used to treat various inflammatory diseases.

Anti-Inflammatory Activity of Ethanolic Extract of Sargassum micracanthum

  • Jeong, Da-Hyun;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Kang, Bo-Kyeong;Ahn, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1691-1698
    • /
    • 2013
  • The anti-inflammatory effects of Sargassum micracanthum ethanol extract (SMEE) was investigated using LPS-induced inflammatory response in this study. As a result, there was no cytotoxicity in the macrophage proliferation treated with SMEE compared with the control. SMEE inhibited production of nitric oxide and cytokines (IL-6, TNF-${\alpha}$, and IL-$1{\beta}$) in a dose-dependent manner. In addition, the expression of inducible nitric oxide synthase and cyclooxygenase 2 were suppressed via inhibition of nuclear factor ${\kappa}B$ p65 expression by SMEE treatment. The formation of edema in the mouse ear was reduced at the highest dose tested compared with that in the control, and reduction of ear thickness was observed in histological analysis. Moreover, in an acute toxicity test, no mortalities occurred in mice administered 5,000 mg/kg body weight of SMEE over a 2-week observation period. These results suggest that SMEE may have significant effects on inflammatory mediators and be a potential anti-inflammatory therapeutic material.

LPS로 유도된 RAW 264.7 대식세포에 대한 미역(Undaria pinnatifida) Ethyl Acetate 분획물의 항염증 효과 (Anti-Inflammatory Effect of Ethyl Acetate Fraction Isolated from Undaria pinnatifida on Lipopolysaccharides-Stimulated RAW 264.7 Cells)

  • 최민우;김재일
    • 한국수산과학회지
    • /
    • 제46권4호
    • /
    • pp.384-392
    • /
    • 2013
  • An ethanolic extract of Undaria pinnatifida was fractionated using several solvents. Of the fractions, the ethyl acetate fraction had the greatest inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophage cells. Using this fraction (U. pinnatifida ethyl acetate extract, UPE), we investigated the molecular mechanism underlying its inhibitory effect on LPS-stimulated RAW 264.7 cells. Pretreatment of the cells with up to $100{\mu}g/mL$ UPE significantly inhibited NO production and inducible nitric oxide synthase (iNOS) expression, in a dose-dependent manner. Similarly, UPE treatment markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6 and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), while it strongly suppressed the nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) by preventing proteolytic degradation of inhibitor of nuclear factor ${\kappa}B$ $(I{\kappa}B)-{\alpha}$. Moreover, UPE treatment significantly reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) in LPS-stimulated cells. These results indicate that UPE contains anti-inflammatory compounds and suggest that it might be used as a functional food material that assists in prevention of inflammatory diseases.

Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway

  • Lee, Hyesook;Park, Cheol;Kwon, Da Hye;Hwangbo, Hyun;Kim, So Young;Kim, Min Yeong;Ji, Seon Yeong;Kim, Da Hye;Jeong, Jin-Woo;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • 제15권6호
    • /
    • pp.686-702
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS: To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1β, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS: The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1β, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS: Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.

Anti-inflammatory Effect of Mangosteen (Garcinia mangostana L.) Peel Extract and its Compounds in LPS-induced RAW264.7 Cells

  • Widowati, Wahyu;Darsono, Lusiana;Suherman, Jo;Fauziah, Nurul;Maesaroh, Maesaroh;Erawijantari, Pande Putu
    • Natural Product Sciences
    • /
    • 제22권3호
    • /
    • pp.147-153
    • /
    • 2016
  • Inflammation plays an important role in host defense against external stimuli such as infection by pathogen, endotoxin or chemical exposure by the production of the inflammatory mediators that produced by macrophage. Anti-inflammatory factor is important to treat the dangers of chronic inflammation associated with chronic disease. This research aims to analyze the anti-inflammatory effects of Garcinia mangostana L. peel extract (GMPE), ${\alpha}$-mangostin, and ${\gamma}$-mangostin in LPS-induced murine macrophage cell line (RAW 264.7) by inhibiting the production of inflammatory mediators. The cytotoxic assay of G. mangostana L. extract, ${\alpha}$-mangostin, and ${\gamma}$-mangostin were performed by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) to determine the safe and non-toxic concentration in RAW 264.7 for the further assay. The concentration of inflammatory mediators (COX-2, IL-6, and IL-$1{\beta}$) were measured by the ELISA-based assay and NO by the nitrate/nitrite colorimetric assay in treated LPS-induced RAW 264.7 cells. The inhibitory activity was determined by the reducing concentration of inflammatory mediators in treated LPS-induced RAW 264.7 over the untreated cells. This research revealed that GMPE, ${\alpha}$-mangostin, and ${\gamma}$-mangostin possess the anti-inflammatory effect by reducing COX-2, IL-6, IL-$1{\beta}$, and NO production in LPS-induces RAW 264.7 cells.