• Title/Summary/Keyword: Anti-fungal

Search Result 225, Processing Time 0.025 seconds

Multifuctional Activities of Cultured extracts from Lactobacillus plantarum Ml as cosmeceutical ingredients.

  • S. Y. Vi;Lee, J. I;E. J. Han;G. J. Jung
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.243-244
    • /
    • 2003
  • The effects of Lactic acid bacteria have been investigated on anti-tumor. cholesterol reduction in blood. promotion of immune and skin-beauty. We are focused on cosmeceutical activity of Lactic acid bacteria (LAB). Ml, which is found in Korean traditional food. Kimchi The LAB.Ml has been identified as Lactobacillus plantarum Ml and individually cultured with Soybean soup and Soybean-Curd whey, until the total acidity has been reached the highest. After then, cell-free extracts from Ml have been used for the following studies. We assessed the effect of Lactobacillus plantarum Ml on the depigmentation of B16FlO melanoma cell. The melanin content of cells was decreased with 1-3% of cultured extracts. The tyrosinase activity was reduced by cell-free extracts of Lactobacillus plantarum Ml. Anti-aging and anti-oxidative activity of Ml cultured extract was also studied in NIH-3T3 human fibroblast cells. It showed that induction of cell proliferation. collagen synthesis and free radical scavenging activity. Additional studies for anti-fungal and anti-acne activity were also detected on Staphylococcus aureus and Propionibacterium acnes, respectively. These results suggest that cultured extract of Lactobacillun plantarum Ml would be used for cosmeceutical ingredients through multifunctional reaction on skin such as whitening, anti-wrinkle. anti-oxidation and anti-acnes.

  • PDF

Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

  • Lee, Seung-Bae
    • Journal of Pharmacopuncture
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2016
  • Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti-fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from $62.5{\mu}g/mL$ to $125{\mu}g/mL$ for BV and from $15.63{\mu}g/mL$ to $62.5{\mu}g/mL$ for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

Immunomodulation of Fungal β-Glucan in Host Defense Signaling by Dectin-1

  • Batbayar, Sainkhuu;Lee, Dong-Hee;Kim, Ha-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.433-445
    • /
    • 2012
  • During the course of evolution, animals encountered the harmful effects of fungi, which are strong pathogens. Therefore, they have developed powerful mechanisms to protect themselves against these fungal invaders. ${\beta}$-Glucans are glucose polymers of a linear ${\beta}$(1,3)-glucan backbone with ${\beta}$(1,6)-linked side chains. The immunostimulatory and antitumor activities of ${\beta}$-glucans have been reported; however, their mechanisms have only begun to be elucidated. Fungal and particulate ${\beta}$-glucans, despite their large size, can be taken up by the M cells of Peyer's patches, and interact with macrophages or dendritic cells (DCs) and activate systemic immune responses to overcome the fungal infection. The sampled ${\beta}$-glucans function as pathogen-associated molecular patterns (PAMPs) and are recognized by pattern recognition receptors (PRRs) on innate immune cells. Dectin-1 receptor systems have been incorporated as the PRRs of ${\beta}$-glucans in the innate immune cells of higher animal systems, which function on the front line against fungal infection, and have been exploited in cancer treatments to enhance systemic immune function. Dectin-1 on macrophages and DCs performs dual functions: internalization of ${\beta}$-glucan-containing particles and transmittance of its signals into the nucleus. This review will depict in detail how the physicochemical nature of ${\beta}$-glucan contributes to its immunostimulating effect in hosts and the potential uses of ${\beta}$-glucan by elucidating the dectin-1 signal transduction pathway. The elucidation of ${\beta}$-glucan and its signaling pathway will undoubtedly open a new research area on its potential therapeutic applications, including as immunostimulants for antifungal and anti-cancer regimens.

Evaluation of Anti-Sapstain Activity of Rice Powder Adhesives Modified with Wood Preservatives

  • Lee, Min;Kang, Eun-Chang;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.872-879
    • /
    • 2016
  • Demand of natural interior finishing material has been widely sprayed in nowadays because many weak people as children, pregnant women, and elder people are being struggled with sick house syndrome due to volatile organic compounds such as formaldehyde, toluene, benzene, etc. Our research group developed a no-added formaldehyde adhesive for wood-based panels from mainly rice powder and some additives in the previous study for abating sick house syndrome. Since the rice powder adhesive provides a good source of nutrients with microorganisms, it was suspected a susceptibility of the rice powder adhesive to fungal and sapstain attack. We evaluated anti-sapstain activity of the rice powder adhesives modified by adding wood preservatives. We modified the rice powder adhesive by adding three different types of anti-sapstain preservatives at three different concentrations to assess their anti-sapstin activity. The bonding strengths of the modified rice powder adhesives were still outstanding performance on all samples. Moreover, the plywood manufactured with the modified rice powder adhesive satisfied outdoor use requirement for ordinary plywood (KS F3101, Korean Standard). The results obtained showed that at least 3% of preservative should be added to the rice powder adhesive to obtain effective anti-sapstain activity.

In vivo Anti-fungal Activity of the Essential Oil Fraction from Thymus Species and in vitro Synergism with Clotrimazole

  • Kim, Ji-Hyun;Shin, Seung-Won
    • Natural Product Sciences
    • /
    • v.13 no.3
    • /
    • pp.258-262
    • /
    • 2007
  • The antifungal activity of the essential oil fraction from Thymus magus, and its major component thymol, against Candida albicans was investigated in vitro and in vivo. The combined effects of the oils and clotrimazole, a commonly used antifungal drug for treatment of external candidiasis, were evaluated in this study. In experimental vaginal candidiasis the essential oil fraction of T. magnus resulted in relatively milder inhibition of fungal growth following the inoculation of test mice compared to clotrimazole. However, new fungal growth was not detected up to 12 days after cessation of treatment. In contrast, in a similar experiment using clotrimazole, C. albicans was detected in the $12^{th}$ day post-treatment with the sample. This result indicates that T. magnus oil could be a promising drug to control vaginal candidiasis. In checkerboard titer tests, the combination of clotrimazole with the essential oil fraction of T. magus or T. quinquecostatus resulted in significant synergism, with FIC indices between 0.14 and 0.27 against C. albicans, while clotrimazole combined with thymol, the major component of these oils, produced only an additive effect, with FIC indices ranging between 0.50 and 1.00. Thus, the prominent synergistic effects of clotrimazole combined with T. magus essential oil indicate that these compounds may be an effective treatment for C. albicans infections.

Investigation of the Antifungal Activity and Mechanism of Action of LMWS-Chitosan

  • Park, Yoon-Kyung;Kim, Mi-Hyun;Park, Seong-Cheol;Cheong, Hyeon-Sook;Jang, Mi-Kyeong;Nah, Jae-Woon;Hahm, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1729-1734
    • /
    • 2008
  • Chitosan, a cationic polysaccharide, has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. The antifungal activity and mechanism of action of low molecular weight water-soluble chitosan (LMWS-chitosan) were studied in fungal cells and vesicles containing various compositions of fungal lipids. LMWS-chitosan showed strong antifungal activity against various pathogenic yeasts and hyphae-forming fungi but no hemolytic activity or cytotoxicity against mammalian cells. The degree of calcein leakage was assessed on the basis of lipid composition (PC/CH; 10:1, w/w). Our result showing that LMWS-chitosan interacts with liposomes demonstrated that chitosan induces leakage from zwitterionic lipid vesicles. Confocal microscopy revealed that LMWS-chitosan was located in the plasma membrane. Finally, scanning electron microscopy revealed that LMWS-chitosan causes significant morphological changes on fungal surfaces. Its potent antibiotic activity suggests that LMWS-chitosan is an excellent candidate as a lead compound for the development of novel anti-infective agents.

Analysis of the Inhibitory Effect of two Bacterial Strains on Metarhizium anisopliae Induced Fatality Rates in Protaetia Brevitarsis

  • Kwak, Kyu-Won;Nam, Sung-Hee;Park, Kwan-Ho;Lee, Heuisam;Han, Myung-Sae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • Bacterial species, Bacillus amyloliquefaciens and Lactobacillus species (L. sp.5-1), are known to inhibit the growth of pathogenic bacteria and fungi. Metarhizium anisopliae is a pathogenic fungal species which causes fatal damage to P. brevitarsis populations. Therefore, we investigated the inhibitory effect of B. amyloliquefaciens and L. sp. 5-1 on M. anisopliae induced fatality rates in P. brevitarsis. Samples of M. anisopliae-infected sawdust were treated with strain B. amyloliquefaciens KACC10116, strain L. sp. 5-1 KACC19351, and a combination of the two. P. brevitarsis were fed treated sawdust samples, and their subsequent fatality rate was monitored. The fatality rate fell below 1.5% after 10 days and decreased by approximately 40% after 15 days. On average, the fatality rate decreased by 20%, compared to the control. The difference in the decrease in fatality rate between B. amyloliquefaciens treatment and L. sp. 5-1 treatment was not significant. Results indicate that both strains exhibit high anti-fungal activity, which may be useful in environmental purification efforts. These strains may be used for effective prevention of fungal infection in P. brevitarsis.

Immunomodulatory effects of phytogenics in chickens and pigs - A review

  • Huang, C.M.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.617-627
    • /
    • 2018
  • Environmental stressors like pathogens and toxins may depress the animal immune system through invasion of the gastrointestinal tract (GIT) tract, where they may impair performance and production, as well as lead to increased mortality rates. Therefore, protection of the GIT tract and improving animal health are top priorities in animal production. Being natural-sourced materials, phytochemicals are potential feed additives possessing multiple functions, including: anti-inflammatory, anti-fungal, anti-viral and antioxidative properties. This paper focuses on immunity-related physiological parameters regulated by phytochemicals, such as carvacrol, cinnamaldehyde, curcumin, and thymol; many studies have proven that these phytochemicals can improve animal performance and production. On the molecular level, the impact of inflammatory gene expression on underlying mechanisms was also examined, as were the effects of environmental stimuli and phytochemicals in initiating nuclear factor kappa B and mitogen-activated protein kinases signaling pathways and improving health conditions.

Curcuma longa: A treasure of medicinal properties

  • Ansar, Saba;Jilani, Shazia;Abbasi, Hana;Siraj, Mantasha binth;Hashimi, Ayshah;Ahmed, Yasmeen;Khatoon, Rizwana;Rifas, AL Mohd.
    • CELLMED
    • /
    • v.10 no.2
    • /
    • pp.9.1-9.7
    • /
    • 2020
  • Nature is full of precious treasure to cure us from various disorders. One of them is Curcuma longa belonging to Zingiberaceae family, present with outstanding therapeutic value and used since time immemorial. Part used from the plant is rhizome native to India (south east continent) which is the world's largest producer, consumer and exporter of turmeric. The active principle called curcumin or diferuloylmethane is a yellow pigment that exhibits numerous activities and wide spectrum of biological actions which include anti-inflammatory, hepatoprotective, anti-cancerous, anti-fungal, neuroprotective activities and many more. This paper focuses on the comparative evaluation of medicinal properties of Curcuma longa as mentioned in Unani classical literature with its modern scientific researches.

Role of Fermentation in Improving Nutritional Quality of Soybean Meal - A Review

  • Mukherjee, Runni;Chakraborty, Runu;Dutta, Abhishek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1523-1529
    • /
    • 2016
  • Soybean meal (SBM), a commonly used protein source for animal feed, contains anti-nutritional factors such as trypsin inhibitor, phytate, oligosaccharides among others, which limit its utilization. Microbial fermentation using bacteria or fungi has the capability to improve nutritional value of SBM by altering the native composition. Both submerged and solid state fermentation processes can be used for this purpose. Bacterial and fungal fermentations result in degradation of various anti-nutritional factors, an increase in amount of small-sized peptides and improved content of both essential and non-essential amino acids. However, the resulting fermented products vary in levels of nutritional components as the two species used for fermentation differ in their metabolic activities. Compared to SBM, feeding non-ruminants with fermented SBM has several beneficial effects including increased average daily gain, improved growth performance, better protein digestibility, decreased immunological reactivity and undesirable morphological changes like absence of granulated pinocytotic vacuoles.