Browse > Article
http://dx.doi.org/10.5713/ajas.15.0627

Role of Fermentation in Improving Nutritional Quality of Soybean Meal - A Review  

Mukherjee, Runni (Department of Food Technology and Biochemical Engineering, Jadavpur University)
Chakraborty, Runu (Department of Food Technology and Biochemical Engineering, Jadavpur University)
Dutta, Abhishek (Faculteit Industriele Ingenieurswetenschappen, KU Leuven, Campus Groep T Leuven)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.11, 2016 , pp. 1523-1529 More about this Journal
Abstract
Soybean meal (SBM), a commonly used protein source for animal feed, contains anti-nutritional factors such as trypsin inhibitor, phytate, oligosaccharides among others, which limit its utilization. Microbial fermentation using bacteria or fungi has the capability to improve nutritional value of SBM by altering the native composition. Both submerged and solid state fermentation processes can be used for this purpose. Bacterial and fungal fermentations result in degradation of various anti-nutritional factors, an increase in amount of small-sized peptides and improved content of both essential and non-essential amino acids. However, the resulting fermented products vary in levels of nutritional components as the two species used for fermentation differ in their metabolic activities. Compared to SBM, feeding non-ruminants with fermented SBM has several beneficial effects including increased average daily gain, improved growth performance, better protein digestibility, decreased immunological reactivity and undesirable morphological changes like absence of granulated pinocytotic vacuoles.
Keywords
Amino Acids; Anti-nutritional Factors; Soybean Meal; Fermentation; Non-ruminants;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Adams, N. R. 1995. Detection of the effects of phytoestrogens on sheep and cattle. J. Anim. Sci. 73:1509-1515.   DOI
2 Amadou, I., A. Tidjani, M. B. K. Foh, M. T. Kamara, and G. W. Le. 2010a. Influence of Lactobacillus plantarum Lp6 fermentation on the functional properties of soybean protein meal. Emir. J. Food Agric. 22:456-465.   DOI
3 Amadou, I., M. T. Kamara, A. Tidjani, M. B. K. Foh, and G. W. Le. 2010b. Physicochemical and nutritional analysis of fermented soybean protein meal by Lactobacillus plantarum Lp6. World J. Dairy Food Sci. 5:114-118.
4 Han, B. Z., F. M. Rombouts, and M. J. R. Nout. 2001. A Chinese fermented soybean food. Int. J. Food Microbiol. 65:1-10.   DOI
5 Hirabayashi, M., T. Matsui, H. Yano, and T. Nakajima. 1998. Fermentation of soybean meal with Aspergillus usamii reduces phosphorus excretion in chicks. Poult. Sci. 77:552-556.   DOI
6 Hong, K. J., C. H. Lee, and S. W. Kim. 2004. Aspergillus oryzae 3.042GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 7:430-434.   DOI
7 Hotz, C. and R. S. Gibson. 2007. Traditional food-processing and preparation practices to enhancing the bioavailability of micronutrients in plant-based diets. J. Nutr. 137:1097-1100.   DOI
8 Ilyas, A., M. Hirabayashi, T. Matsui, H. Yano, F. Yano, T. Kikushima, M. Takebe, and K. Hayakawa. 1995. A note on the removal of phytate in soybean meal using Aspergillus usami. Asian Australas. J. Anim. Sci. 8:135-138.   DOI
9 Kader, M. A., S. Koshio, M. Ishikawa, S. Yokoyama, M. Bulbul, B. T. Nguyen, J. Gao, and A. Laining. 2012. Can fermented soybean meal and squid by-product blend be used as fishmeal replacements for Japanese flounder (Paralichthys olivaceus)? Aquac. Res. 43:1427-1438.   DOI
10 Jones, C. K., J. M. DeRouchey, J. L. Nelssen, M. D. Tokach, S. S. Dritz, and R. D. Goodband. 2010. Effects of fermented soybean meal and specialty animal protein sources on nursery pig performance. J. Anim. Sci. 88:1725-1732.   DOI
11 Kishida, T., H. Ataki, M. Takebe, and K. Ebihara. 2000. Soybean meal fermented by Aspergillus awamori increases the cytochrome p-450 content of the liver microsomes of mice. J. Agric. Food Chem. 48:1367-1372.   DOI
12 Kwon, I. H., M. H. Kim, C. H. Yun, J. Y. Go, C. H. Lee, H. J. Lee, W. Phipek, and J. K. Ha. 2011. Effects of fermented soybean meal on immune response of weaned calves with experimentally induced lipopolysaccharide challenge. Asian Australas. J. Anim. Sci. 24:957-964.   DOI
13 Liu, X., J. Feng, Z. Xu, Y. Lu, and Y. Liu. 2007. The effects of fermented soybean meal on growth performance and immune characteristics in weaned piglets. Turk. J. Vet. Anim. Sci. 31:341-345.
14 Lena, D. G., E. Patroni, and G. B. Quaglia. 1997. Improving the nutritional value of wheat bran by a white rot fungus. Int. J. Food Sci. Technol. 32:513-519.   DOI
15 Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, J. D. Hancock, G. Allee, R. D. Goodband, and R. D. Klemm. 1990. Transient hypersensitivity to soybean meal in the early-weaned pig. J. Anim. Sci. 68:1790-1799.   DOI
16 Liener, I. E. 1994. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr. 34:31-67.   DOI
17 Dunsford, B. R., D. A. Knabe, and W. E. Hacnsly. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 67:1855-1864.   DOI
18 Amadou, I., G. W. Le, Y. H. Shi, and S. Jin. 2011. Reducing, radical scavenging, and chelation properties of fermented soy protein meal hydrolysate by Lactobacillus plantarum Lp6. Int. J. Food Prop. 14:654-665.   DOI
19 Chah, C. C., C. W. Carlson, G. Semeniuk, I. S. Palmer, and C. W. Hesseltine. 1975. Growth promoting effects of fermented soyabeans for broilers. Poult. Sci. 54:600-609.   DOI
20 Cervantes-Pahm, S. K. and H. H. Stein. 2010. Ileal digestibility of amino acids in conventional, fermented, and enzyme-treated soybean meal and in soy protein isolate, fish meal, and casein fed to weanling pigs. J. Anim. Sci. 88:2674-2683.   DOI
21 Pinto, G. A. S., S. G. F. Leite, S. C. Terzi, and C. Couri. 2001. Selection of tannase-producing Aspergillus niger strains. Braz. J. Microbiol. 32:24-26.   DOI
22 Mathivanan, R., P. Selvaraj, and K. Nanjappan. 2006. Feeding of fermented soybean meal on broiler performance. Int. J. Poult. Sci. 5:868-872.   DOI
23 Moktan, B., J. Saha, and P. K. Sarkar. 2008. Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema. Food Res. Int. 41:586-593.   DOI
24 Mukherjee, R., A. Dutta, and R. Chakraborty. 2015. Fermented soy products gaining popularity in poultry diets. All About Feed. 23:22-23.
25 Qin, G., E. R. ter Elst, M. W. Bosch, and A. F. B. van der Poel. 1996. Thermal processing of whole soya beans: Studies on the inactivation of antinutritional factors and effects on ileal digestibility in piglets. Anim. Feed Sci. Technol. 57:313-324.   DOI
26 Rigo, E., J. L. Ninow, M. Di Luccio, J. V. Oliveira, A. E. Polloni, D. Remonatto, F. Arbter, R. Vardanega, D. de Oliveira, and H. Treichel. 2010. Lipase production by solid fermentation of soybean meal with different supplements. LWT-Food Sci. Technol. 43:1132-1137.   DOI
27 Ross, P. R., S. Morgan, and C. Hill. 2002. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79:3-16.   DOI
28 Singh, K., C. J. Linden, E. J. Johnson, and P. R. Tengerdy. 1990. Bioconversion of wheat straw to animal feed by solid substrate fermentation or ensiling. Indian J. Microbiol. 30:201-208.
29 Song, Y. S., J. Frias, C. Martinez-Villaluenga, C. Vidal-Valdeverde, and E. G. de Mejia. 2008. Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chem. 108:571-581.   DOI
30 Egounlety, M. and O. C. Aworh. 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and ground bean (Macrotyloma geocarpa Harms). J. Food Eng. 56:249-254.   DOI
31 Feng, J., X. Liu, Z. R. Xu, Y. Y. Liu, and Y. P. Lu. 2007a. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol. 134:235-242.   DOI
32 Feng, J., X. Liu, Z. R. Xu, Y. P. Lu, and Y. Y. Liu. 2007b. The effect of Aspergillus oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim. Feed Sci. Technol. 134:295-303.   DOI
33 Frias, J., Y. S. Song, C. Martinez-Villaluenga, E. G. De Mejia, and C. Vidal-Valverde. 2008. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem. 56:99-105.   DOI
34 Yang, Y. X., Y. G. Kim, J. D. Lohakare, J. H. Yun, J. K. Lee, M. S. Kwon, J. K. Park, J. Y. Choi, and B. J. Chae. 2007. Comparative efficacy of different soy protein sources on growth performance, nutrient digestibility, and intestinal morphology in weaned pigs. Asian Australas. J. Anim. Sci. 20:775-783.   DOI
35 Song, Y. S., V. G. Perez, J. E. Pettigrew, C. Martinez-Villaluenga, and E. G. de Mejia. 2010. Fermentation of soybean meal and its inclusion in diets for newly weaned pigs reduced diarrhea and measures of immunoreactivity in the plasma. Anim. Feed Sci. Technol. 159:41-49.   DOI
36 Teng, D., M. Gao, Y. Yang, B. Liu, Z. Tian, and J. Wang. 2012. Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatal. Agric. Biotechnol. 1:32-38.
37 Yamamoto, T., Y. Iwashita, H. Matsunari, T. Sugita, H. Furuita, A. Akimoto,K. Okamatsu, and N. Suzuki. 2010. Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of Rainbow trout Oncorhynchus mykiss. Aquaculture 309:173-180.   DOI
38 Yuan, Y. C., Y. C. Lin, H. J. Yang, Y. Gong, S. Y. Gong, and D. H. Yu. 2013. Evaluation of fermented soybean meal in the practical diets for juvenile Chinese sucker, Myxocyprinus asiaticus. Aquac. Nutr. 19:74-83.   DOI
39 Zamora, R. G. and T. L. Veum. 1979. Whole soybeans fermented with Aspergillus oryzae and Rhizopus oligosporus for growing pigs. J. Anim. Sci. 48:63-68.   DOI