• Title/Summary/Keyword: Anti-excitotoxicity

Search Result 14, Processing Time 0.026 seconds

Synthesis and Evaluation of Biological Properties of Benzylide-neacetophenone Derivatives

  • Oh, Sei-Kwan;Jang, So-Yong;Kim, Dong-Hyun;Han, Inn-Oc;Jung, Jae-Chul
    • Archives of Pharmacal Research
    • /
    • v.29 no.6
    • /
    • pp.469-475
    • /
    • 2006
  • A series of yakuchinone B 1f and its analogs 1a-e was synthesized and evaluated for free radical scavenging, suppression of LPS-induced NO generation, cytotoxicity and anti-excitotoxicity in vitro. Compound 1c exhibited potent anti-excitotoxicity, while all compounds 1a-f showed considerable effects of free radical scavenging, suppression of LPS-induced NO generation, and cytotoxicity in microglia.

Neuroprotective and Antioxidant Effects of the Butanol Fraction Prepared from Opuntia ficus-indica var. saboten

  • Cho, Jung-Sook;Han, Chang-Kyun;Lee, Yong-Sup;Jin, Chang-Bae
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.205-211
    • /
    • 2007
  • The fruits and stems of Opuntia ficus-indica var. saboten have been reported to exhibit a variety of pharmacological actions, including antioxidant, analgesic, anti-inflammatory, and anti-ulcer effects. In the present study, we evaluated effects of the butanol fraction (SK OFB901) prepared from the 50% ethanol extract of the stems on various types of neuronal injuries induced by oxidative stress, excitotoxins, and amyloid ${\beta}\;(A_{\beta})$ in primary cultured rat cortical cells. Its antioxidant and radical scavenging activities were also evaluated by cell-free bioassays. We found that SK OFB901 strongly inhibited the oxidative neuronal damage induced by $H_2O_2$ or xanthine/xanthine oxidase. In addition, it exhibited marked inhibition of the excitotoxic neuronal damage induced by glutamate, N-methyl-D-aspartic acid, or kainate. Furthermore, the $A_{\beta(25-35)}$-induced neurotoxicity was also significantly attenuated by SK OFB901. It was found to inhibit lipid peroxidation initiated by $Fe^{2+}$ and L-ascorbic acid in rat brain homogenates and scavenge 1,1-diphenyl-2-picrylhydrazyl free radicals. These results indicate that the butanol fraction prepared from the stems of Opuntia ficus-indica var. saboten exerts potent antioxidant and neuroprotective effects through multiple mechanisms, implying its potential applications for the prevention or management of neurodegenerative disorders associated with oxidative stress, excitotoxicity, and $A{\beta}$.

Bark Constituents from Mushroom-detoxified $Rhus$ $verniciflua$ Suppress Kainic Acid-induced Neuronal Cell Death in Mouse Hippocampus

  • Byun, Jong-Seon;Han, Yoon-Hee;Hong, Sung-Jun;Hwang, Sung-Mi;Kwon, Yong-Soo;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Myong-Jo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.279-283
    • /
    • 2010
  • Urushinol, a plant allergen, has significantly restricted the medical application of $Rhus$ $verniciflua$, although it has been reported to possess a wide variety of biological activities such as anti-inflammatory, antioxidant, and anti-cancer actions. To reduce the urushinol content while maintaining the beneficial biological activities, mushroom-mediated fermentation of $Rhus$ $verniciflua$ was carried out and this method resulted in significantly attenuated allergenicity [1]. In the present study, to examine the neuroprotective properties of mushroom-fermented stem bark of $Rhus$ $verniciflua$, two constituents were isolated from mushroom-fermented bark and their neuroprotective properties were examined in a mouse model of kainic acid (KA)-induced excitotoxicity. KA resulted in significant apoptotic neuronal cell death in the CA3 region of mouse hippocampus. However, seven daily administrations of RVH-1 or RVH-2 prior to KA injection significantly attenuated KA-induced pyramidal neuronal cell death in the CA3 region. Furthermore, pretreatment with RVH-1 and RVH-2 also suppressed KA-induced microglial activation in the mouse hippocampus. The present study demonstrates that RVH-1 and RVH-2 isolated from $Rhus$ $verniciflua$ and detoxified using mushroom species possess neuroprotective properties against KA-induced excitotoxicity. This leads to the possibility that detoxified $Rhus$ $verniciflua$ can be a valuable asset in herbal medicine.

Effect of Bee Venom on Glutamate-mediated Excitotoxicity in NSC-34 Motor Neuronal Cells (Glutamate 매개 흥분성 신경독성에 대한 봉독의 NSC-34 신경세포사멸 억제 효과)

  • Lee, Sang-Min;Choi, Sun-Mi;Jung, So-Young;Yang, Eun-Jin
    • YAKHAK HOEJI
    • /
    • v.55 no.5
    • /
    • pp.385-390
    • /
    • 2011
  • Bee venom (BV), which is extracted from honeybees, has been used in traditional Korean medical therapy. Glutamate-mediated excitotoxicity contributes to neuronal death in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) or Alzheimer's disease (AD). This study is to investigate the effect of BV on glutamate-induced neurotoxicity on NSC-34 motor neuron cells. To determine the viability of motor neuronal cells, we performed with MTT assays in glutamate-treated NSC-34 cell with BV or without. For the measurement of oxidative stress, DCF assay was used in glutamate-treated NSC-34 motor neuronal cells with BV or without. To investigate the molecular mechanism of BV against glutamate-mediated neurotoxicity in NSC-34 cells, western blot analysis was used. Glutamate significantly decreased cell viability by glutamate dose- or treatment time-dependent manner in NSC-34 cells. However, BV pre-treatment dramatically inhibited glutamate-induced neuronal cell death. Furthermore, we found that BV increased the expression of Bcl-2 protein that is anti-apoptotic protein and reduced the generation of oxidative stress. BV has a neuroprotective role against glutamate neurotoxicity by an increase of anti-apoptotic protein. It suggests that BV may be useful for the reduction of neuronal cell death in neuronal disease models.

The Effects of Anti-Alzheimer on CT105-induced PC 12 Cells by Corynoxeine Isolated from Uncariae Ramulus et Uncus (pCT105로 원격 유도된 PC12 세포에서 조구등으로부터 분리한 corynoxeine의 항치매 효과)

  • Kang Hyung Won;Kim Sang Tae;Lyu Yeoung Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1111-1119
    • /
    • 2004
  • In this study, we investigated that the effects of corynoxeine on the apoptosis by inducible CT105 in PC 12 cells and neuronpathogenic agent as CT105 confirmed with apoptosis, DNA fragmentation, neurite outgrowth and immunocytochemistry analysis This study examines whether corynoxeine have an anti-alzhmeimer agent by inhibition of apoptosis by CT105 and induces neurite outgrowth. Cytotoxicity was assessed in PC12 cell cultures by DNA fragmentation and measuring lactate dehydrogenase (LDH) in the culture media. The treatment of corynoxeine in exposure of cultures to CT105 and provided complete protection against cytotoxicity. CT105-induced cytotoxicity was blocked by apoptotsis, repaired by DNA fragmentation, neurite outgrowth and exposure to CT105 expression and regenerated with neurite outgrowth and immunocytochemistry by corynoxeine. These results indicate that in neuronal cell cultures, damage of T105, repaired excitotoxicity by corynoxeine and CT105-induced cytotoxicity is blocked primarily by the activation of anti-apoptosis.

KR-33028, a Novel Na+/H+ Exchanger-1 Inhibitor, Attenuates Glutamate-Induced Apoptotic Cell Death through Maintaining Mitochondrial Function

  • Lee, Bo-Kyung;Lee, Sun-Kyung;Yi, Kyu-Yang;Yoo, Sung-Eun;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.445-450
    • /
    • 2011
  • Preciously, we demonstrated that a novel NHE-1 inhibitor, KR-33028 attenuated cortical neuronal apoptosis induced by glutamate. In the present study, we investigated the signaling mechanism of neuroprotective effect of KR-33028 against glutamate-induced neuronal apoptosis, especially focusing on mitochondrial death pathway. Our data showed that glutamate induces a biphasic rise in mitochondrial $Ca^{2+}$ and that KR-33028 significantly prevents the second phase increase, but not the first phase increase in mitochondrial $Ca^{2+}$. Furthermore, KR-33028 restored the ${\Delta}{\Psi}_m$ dissipation and cytochrome c release into cytoplasm induced by glutamate in a concentration-dependent manner. The inhibition of mitochondrial $Ca^{2+}$ overload by ruthenium red also inhibited glutamate-induced apoptotic cell death, mitochondrial membrane potential, ${\Delta}{\Psi}_m$ dissipation and cytochrome c release. These data suggest that inhibition of mitochondrial $Ca^{2+}$ overload is likely to be attributable to anti-apoptotic effect of KR-33028. Taken together, our results suggest that anti-apoptotic effects of NHE-1 inhibitor, KR-33028 may be mediated through maintenance of mitochondrial function.

Anti-convulsant Effects of Methanol Extract of Gastrodia Elata on Kainic Acid-induced Epilepsy Mouse Model (Kainic acid로 유도된 생쥐의 간질 발작에 대한 천마 메탄올 추출물의 항경련 효과 연구)

  • Jang, Jung Hee;Bae, Chang-Hwan;Kim, Hyungwoo;Kim, Seungtae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.6
    • /
    • pp.614-620
    • /
    • 2014
  • Kainic acid (KA) is a excitatory agonist causing epileptic seizure and excitotoxicity in the hippocampus. Gastrodia Elata (GE) is known to have anti-convulsant and anti-oxidant effects. This study was investigated a possible role of GE in suppressing epileptic seizure using KA-induced epilepsy mouse model. Eight-week-old male C57BL/6 mice were administrated GE (50 or 500 mg/kg) once a day for 5 days, and then injected KA (30 mg/kg) intraperitoneally. Behavioral changes in mice by KA were evaluated for 90 minutes immediately after the KA administration. Six hours after the KA administration, their brains were harvested and the expressions of glutamate decarboxylase 67 (GAD-67) and K+-Cl- cotransporter 2 (KCC2) in the hippocampus of the mice were measured by immunohistochemistry.GE delayed the onset of epileptic seizure after KA administration, suppressed the severity of the seizure and decreased the number of severe seizures dose dependently. Moreover, GAD-67 and KCC2 expressions in the cornu ammonis (CA) 1 and CA3 of 500 mg/kg GE administrated mice were significantly increased compared to those in KA-treated mice.GAD-67 and KCC2 play an important role in regulating GABAergic system. Our results suggest that GE has anti-convulsant effect against KA-induced epileptic seizure through enhancing GABAergic system.

Neuroprotective and Antioxidant Effects of Novel Benzofuran-2-Carboxamide Derivatives

  • Cho, Jungsook;Park, Chowee;Lee, Youngmun;Kim, Sunyoung;Bose, Shambhunath;Choi, Minho;Kumar, Arepalli Sateesh;Jung, Jae-Kyung;Lee, Heesoon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.275-282
    • /
    • 2015
  • In the present study, we synthesized a series of novel 7-methoxy-N-(substituted phenyl)benzofuran-2-carboxamide derivatives in moderate to good yields and evaluated their neuroprotective and antioxidant activities using primary cultured rat cortical neuronal cells and in vitro cell-free bioassays. Based on our primary screening data with eighteen synthesized derivatives, nine compounds (1a, 1c, 1f, 1i, 1j, 1l, 1p, 1q and 1r) exhibiting considerable protection against the NMDA-induced excitotoxic neuronal cell damage at the concentration of $100{\mu}M$ were selected for further evaluation. Among the selected derivatives, compound 1f (with $-CH_3$ substitution at R2 position) exhibited the most potent and efficacious neuroprotective action against the NMDA-induced excitotoxicity. Its neuroprotective effect was almost comparable to that of memantine, a well-known NMDA antagonist, at $30{\mu}M$ concentration. In addition to 1f, compound 1j (with -OH substitution at R3 position) also showed marked anti-excitotoxic effects at both 100 and $300{\mu}M$ concentrations. These findings suggest that $-CH_3$ substitution at R2 position and, to a lesser degree, -OH substitution at R3 position may be important for exhibiting neuroprotective action against excitotoxic damage. Compound 1j was also found to scavenge 1,1-diphenyl-2-picrylhydrazyl radicals and inhibit in vitro lipid peroxidation in rat brain homogenate in moderate and appreciable degrees. Taken together, our structure-activity relationship studies suggest that the compound with $-CH_3$ substitution at R2 and -OH substitution at R3 positions of the benzofuran moiety might serve as the lead exhibiting potent anti-excitotoxic, ROS scavenging, and antioxidant activities. Further synthesis and evaluation will be necessary to confirm this possibility.

Anti-inflammatory Activity of 1-docosanoyl Cafferate Isolated from Rhus verniciflua in LPS-stimulated BV2 Microglial Cells

  • Lee, Jae-Won;Cheong, Il-Young;Kim, Hae-Sung;Lee, Jae-Jun;Lee, Yong-Suk;Kwon, Yong-Soo;Kim, Myong-Jo;Lee, Hee-Jae;Kim, Sung-Soo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as protection of neuronal cells against excitotoxicity, the biological activity of 1-docosanoyl cafferate (DC) has not been examined. The objective of the present study was to evaluate the anti-inflammatory effects of DC, isolated from the stem bark of Rhus verniciflua, on lipopoly-saccharide (LPS)-stimulated BV2 microglial cells. Pretreatment of cells with DC significantly attenuated LPS-induced NO production, and mRNA and protein expression of iNOS in a concentration-dependent manner. DC also significantly suppressed LPS-induced release of cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. Consistent with the decrease in cytokine release, DC dose-dependently and significantly attenuated LPS-induced mRNA expression of these cytokines. Furthermore, DC significantly suppressed LPS-induced degradation of IKB, which retains NF-kB in the cytoplasm. Therefore, nuclear translocation of NF-kB induced by LPS stimulation was significantly suppressed with DC pretreatment. Taken together, the present study suggests that DC exerts its anti-inflammatory activity through the suppression of NF-kB translocation to the nucleus.

Perspectives for Ginsenosides in Models of Parkinson's Disease

  • Wei-Ming, Lin;Gille, Gabriele;Radad, Khaled;Rausch, Wolf-Dieter
    • Journal of Ginseng Research
    • /
    • v.31 no.3
    • /
    • pp.127-136
    • /
    • 2007
  • Ginseng, the root of Panax species, is a well-known herbal medicine. It has been used as traditional medicine in Korea, China and Japan for thousands of years and now is a popular and worldwide natural medicine. The active principles of ginseng are ginsenosides which are also called ginseng saponins. Traditionally ginseng has been used primarily as a tonic to invigorate weak body functions and help the restoration of homeostasis. Current in vivo and in vitro studies demonstrate its beneficial effects in a wide range of pathological conditions such as cardiovascular diseases, cancer, immune deficiency and hepatotoxicity. Moreover, recent research indicates that some of ginseng's active ingredients exert beneficial actions on aging and neurodegenerative disorders such as Parkinson´s disease. Essentially, antioxidant, antiinflammatory, anti-apoptotic and immunostimulant activities are mostly underlying the postulated ginseng-mediated protective mechanisms. Next to animal studies, data from neural cell cultures contribute to the understanding of these mechanisms which involve decreasing nitric oxide, scavenging of free radicals and counteracting excitotoxicity. This paper focuses on own and other neuroprotective data on ginseng for dopaminergic neurons and intends to show aspects where neuroprotection e.g. by ginsenosides, additionally or preceding standard Parkinson therapy, could come about as a valuable contribution to slow neurodegenerative processes.