• Title/Summary/Keyword: Anti-cancer compound

Search Result 250, Processing Time 0.043 seconds

Hypoxia Inducible Factor-1α Directly Regulates Nuclear Clusterin Transcription by Interacting with Hypoxia Response Elements in the Clusterin Promoter

  • Park, Jeongsook;Park, So Yun;Shin, Eunkyung;Lee, Sun Hee;Kim, Yoon Sook;Lee, Dong Hoon;Roh, Gu Seob;Kim, Hyun Joon;Kang, Sang Soo;Cho, Gyeong Jae;Jeong, Bo-Young;Kim, Hwajin;Choi, Wan Sung
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.178-186
    • /
    • 2014
  • Differential transcription of the clusterin (CLU) gene yields two CLU isoforms, a nuclear form (nCLU) and a secretory form (sCLU), which play crucial roles in prostate tumorigenesis. Pro-apoptotic nCLU and anti-apoptotic sCLU have opposite effects and are differentially expressed in normal and cancer cells; however, their regulatory mechanisms at the transcriptional level are not yet known. Here, we examined the transcriptional regulation of nCLU in response to hypoxia. We identified three putative hypoxia response elements (HREs) in the human CLU promoter between positions -806 and +51 bp. Using a luciferase reporter, electrophoretic gel mobility shift, and chromatin immunoprecipitation assays, we further showed that hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) bound directly to these sites and activated transcription. Exposure to the hypoxia-mimetic compound $CoCl_2$, incubation under 1% $O_2$ conditions, or overexpression of HIF-$1{\alpha}$ enhanced nCLU expression and induced apoptosis in human prostate cancer PC3M cells. However, LNCaP prostate cancer cells were resistant to hypoxia-induced cell death. Methylation-specific PCR analysis revealed that the CLU promoter in PC3M cells was not methylated; in contrast, the CLU promoter in LNCap cells was methylated. Co-treatment of LNCaP cells with $CoCl_2$ and a demethylating agent promoted apoptotic cell death through the induction of nCLU. We conclude that nCLU expression is regulated by direct binding of HIF-$1{\alpha}$ to HRE sites and is epigenetically controlled by methylation of its promoter region.

Cytotoxic and Anti-inflammatory Activities of Lipids from the Nuruk (Rhizopus oryzae KSD-815) (누룩(Rhizopus oryzae KSD-815)으로부터 분리한 지질화합물의 세포독성 및 항염증 활성)

  • Kwak, Ho-Young;Lee, Sang-Jin;Lee, Dae-Young;Bae, Nark-Hyun;Jung, La-Koon;Hong, Sung-Youl;Kim, Gye-Won;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • Nuruk is the Korean traditional Koji that contains various microorganisms and has been used to make the traditional fermented foods including alcoholic beverages. Rhizopus oryzae KSD-815 was isolated from the alcohol-fermenting Nuruk used for manufacturing traditional alcohol. In this study, the authors reported the isolation and identification of four lipids from the Nuruk (Rhizopus oryzae KSD-815) that inoculated wheat with Rhizopus oryzae KSD-815. The dried and powdered Nuruk (Rhizopus oryzae KSD-815) were extracted three times at room temperature with 80% aqueous MeOH. The extracts were partitioned with EtOAc, n-BuOH, and water, successively. The EtOAc extract was suspended in 80% MeOH and partitioned repeatedly with n-hexane. From the n-hexane fraction, four lipids were isolated through the repeated silica gel and ODS column chromatographies. According to the results of physico-chemical data including NMR, GC and MS, the chemical structures of the compounds were determined as linolenic acid methyl ester (1), palmitic acid methyl ester (2), linoleic acid (3), palmitic acid (4). Cytotoxicity was evaluated in huamn breast cancer cells, MDA-MB-231 and human hepatocarcinoma, SK-HEP-1 cells using MTT assay. Exposure of compounds 1 and 3 led to a dose-dependent inhibition of cell viability in both cancer cell lines. In addition, treatment of RAW264.7 cells with compound 3 caused inhibition of lipopolysaccharide/interferon-${\gamma}$-induced nitric oxide production.

Screening of Biogenic Amine Non-Producing Yeast and Optimization of Culture Conditions Using Statistical Method for Manufacturing Black Raspberry Wine (복분자 와인 제조를 위한 바이오제닉 아민 비생성 효모의 선별 및 통계학적 기법을 이용한 배양조건 최적화)

  • Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Seong-Yeop;Heo, Ju-Hee;Jeong, Do-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.592-601
    • /
    • 2015
  • Rubus coreanus is known as Korean black raspberry, native to Korea, Japan, and China. Preliminary studies evaluating their potential for cancer treatment in mammalian test systems are ongoing. In recent years, interest has been renewed due to their high levels of anthocyanins. Anthocyanins in black raspberry are important due to their potential health benefits as dietary antioxidant, anti-inflammatory compound, and as a chemopreventive agent. In the present study, Saccharomyces cerevisiae BA29 was isolated from black raspberry fruit and fruit juice as a biogenic amine non-producing strain for manufacturing of black raspberry wine, after which we investigated its characteristics: biogenic amine-producing ability, cell growth ability, alcohol-fermentation ability, and resistance to alcohol, glucose, and sulfur dioxide. Based on preliminary experiments, we optimized culture medium compositions for improving dried cell weight of S. cerevisiae BA29 by response surface methodology (RSM) as a statistical method. Design for RSM used a central composite design, and molasses with the industrial applicability was used as a carbon source. Through statistical analysis, we obtained optimum values as follows: molasses 200 g/L, peptone 30 g/L, and yeast extract 40 g/L. For the model verification, we confirmed about 3-fold improvement of dried cell weight from 6.39 to 20.9167 g/L compared to basal yeast peptone dextrose medium. Finally, we manufactured black raspberry wine using S. cerevisiae BA29 and produced alcohol of 20.33%. In conclusion, S. cerevisiae isolated from black raspberry fruit and juices has a great potential in the fermentation of black raspberry wine.

Plumbagin Inhibits Expression of Virulence Factors and Growth of Helicobacter pylori (Plumbagin에 의한 헬리코박터 파이로리균의 성장 및 병원성 인자 발현 억제효과)

  • Lee, Min Ho;Woo, Hyun Jun;Park, Min;Moon, Cheol;Eom, Yong-Bin;Kim, Sa-Hyun;Kim, Jong-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.218-226
    • /
    • 2016
  • Helicobacter pylori primarily colonizes the human stomach. Infection by this bacterium is associated with various gastric diseases, including inflammation, peptic ulcer, and gastric cancer. Although there are antibiotic regimens for the eradication of H. pylori, the resistance of this species against antibiotics has been continuously increasing. The natural compound plumbagin has been reported as an antimicrobial and anticancer molecule. In this study, we analyzed the inhibitory effect of plumbagin on H. pylori strain ATCC 49503 as well as the expression of various molecules associated with H. pylori growth or virulence by immunoblotting and reverse transcription polymerase chain reaction (RT-PCR) analyses. We demonstrated the minimal inhibitory concentration of plumbagin on H. pylori through the agar dilution and broth dilution methods. Furthermore, we investigated the effect of plumbagin treatment on the expression of the RNA polymerase subunits and various virulence factors of H. pylori. Plumbagin treatment decreased the expression of RNA polymerase subunit alpha (rpoA), which is closely associated with bacterial survival. Moreover, the mRNA and protein levels of the major CagA and VacA toxins were decreased in plumbagintreated H. pylori cells. Likewise, the expression levels of urease subunit alpha (ureA) and an adhesin (alpA) were decreased by plumbagin treatment. Collectively, these results suggest that plumbagin may inhibit the growth, colonization, and pathogenesis of H. pylori by the mechanism demonstrated in this study.

Esculetin Induces Apoptosis through Caspase-3 Activation in Human Leukemia U937 Cells (Esculetin의 caspase-3 활성을 통한 U937 인체 혈구암세포의 세포사멸 유도)

  • Park, Cheol;Hyun, Sook-Kyung;Shin, Woo-Jin;Chung, Kyung-Tae;Choi, Byung-Tae;Kwon, Hyun-Ju;Hwang, Hye-Jin;Kim, Byung-Woo;Park, Dong-Il;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.249-255
    • /
    • 2009
  • Esculetin, a coumarin compound, has been known to inhibit proliferation and induce apoptosis in several types of human cancer cells. However, the molecular mechanisms involved in esculetin-induced apoptosis are still uncharacterized in human leukemia cells. In this study, we have investigated whether esculetin exerts anti-proliferative and apoptotic effects on human leukemia U937 cells. It was found that esculetin could inhibit cell viability in a time-dependent manner, which was associated with the induction of apoptotic cell death such as increased populations of apoptotic- sub G1 phase. Apoptosis of U937 cells by esculetin was associated with an inhibition of Bcl-2/Bax binding activity, formation of tBid, down-regulation of X-linked inhibitor of apoptotic protein (XIAP) expression, and up-regulation of death receptor 4 (DR4) and FasL expression. Esculetin treatment also induced the degradation of ${\beta}$-catenin and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Furthermore, a caspase-3 specific inhibitor, z-DEVD-fmk, significantly inhibited sub-G1 phase DNA content, morphological changes and degradation of ${\beta}$-catenin and DEE45/ICAD. These results indicated that a key regulator in esculetin-induced apoptosis was caspase-3 in human leukemia U937 cells.

TEST DB: The intelligent data management system for Toxicogenomics (독성유전체학 연구를 위한 지능적 데이터 관리 시스템)

  • Lee, Wan-Seon;Jeon, Ki-Seon;Um, Chan-Hwi;Hwang, Seung-Young;Jung, Jin-Wook;Kim, Seung-Jun;Kang, Kyung-Sun;Park, Joon-Suk;Hwang, Jae-Woong;Kang, Jong-Soo;Lee, Gyoung-Jae;Chon, Kum-Jin;Kim, Yang-Suk
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.66-72
    • /
    • 2003
  • Toxicogenomics is now emerging as one of the most important genomics application because the toxicity test based on gene expression profiles is expected more precise and efficient than current histopathological approach in pre-clinical phase. One of the challenging points in Toxicogenomics is the construction of intelligent database management system which can deal with very heterogeneous and complex data from many different experimental and information sources. Here we present a new Toxicogenomics database developed as a part of 'Toxicogenomics for Efficient Safety Test (TEST) project'. The TEST database is especially focused on the connectivity of heterogeneous data and intelligent query system which enables users to get inspiration from the complex data sets. The database deals with four kinds of information; compound information, histopathological information, gene expression information, and annotation information. Currently, TEST database has Toxicogenomics information fer 12 molecules with 4 efficacy classes; anti cancer, antibiotic, hypotension, and gastric ulcer. Users can easily access all kinds of detailed information about there compounds and simultaneously, users can also check the confidence of retrieved information by browsing the quality of experimental data and toxicity grade of gene generated from our toxicology annotation system. Intelligent query system is designed for multiple comparisons of experimental data because the comparison of experimental data according to histopathological toxicity, compounds, efficacy, and individual variation is crucial to find common genetic characteristics .Our presented system can be a good information source for the study of toxicology mechanism in the genome-wide level and also can be utilized fur the design of toxicity test chip.

  • PDF

DNA Breakage by Salvianolic acid B in the Presence of Cu (II) (구리이온(II)이 존재할 때 Salvianolic acid B에 의한 DNA 절단)

  • Lee, Pyeongjae;Moon, Cheol;Choi, Yoon Seon;Son, Hyun Kyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.2
    • /
    • pp.205-210
    • /
    • 2018
  • Salvianolic acid B, which is a compound in the Salvia miltiorrhiza, has diverse biological activities, In particular, the antioxidative effects were reported to be involved in the protection of hepatocytes, neurons, and various cell types. On the other hand, some phenolic compounds, such as ferulic acid, which is regarded as an antioxidant, plays a pro-oxidative role in the specific transitional metal environment, which could explain the anticancer effect. This study examined the pro-oxidative effects of salvianolic acid B in the presence of $Cu^{2+}$. Treatment with both salvianolic acid B and $Cu^{2+}$ induced the transition of supercoiled DNA to the open circular or linear form but not in the sole salvianolic acid B or $Cu^{2+}$ treatments. Salvianolic acid B reduced the $Cu^{2+}$ to $Cu^+$ using neocuproine, a $Cu^+$ specific chelator. In addition, catalase, an enzyme that breaks down the $H_2O_2$ to water and molecular oxygen, inhibited the DNA breakage. $H_2O_2$, a reactive oxygen species, has detrimental effects on biological molecules, particularly DNA. Overall, the reduction of $Cu^{2+}$ by salvianolic acid B could lead to the production of $H_2O_2$ followed by DNA breakage. These results suggest that the pro-oxidative effects could be the one of the anti-cancer mechanisms of salvianolic acid B, which remains to be explained.

Expression Profiles of Streptomyces Doxorubicin Biosynthetic Gene Cluster Using DNA Microarray System (DNA Microarray 시스템을 이용한 방선균 독소루비신 생합성 유전자군의 발현패턴 분석)

  • Kang Seung-Hoon;Kim Myung-Gun;Park Hyun-Joo;Kim Eung-Soo
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.220-227
    • /
    • 2005
  • Doxorubicin is an anthracycline-family polyketide compound with a very potent anti-cancer activity, typically produced by Streptomyces peucetius. To understand the potential target biosynthetic genes critical for the doxorubicin everproduction, a doxorubicin-specific DNA microarray chip was fabricated and applied to reveal the growth-phase-dependent expression profiles of biosynthetic genes from two doxorubicin-overproducing strains along with the wild-type strain. Two doxorubicin-overproducing 5. peucetius strains were generated via over-expression of a dnrl (a doxorubicin-specific positive regulatory gene) and a doxA (a gene involved in the conversion from daunorubicin to doxorubicin) using a streptomycetes high expression vector containing a strong ermE promoter. Each doxorubicin-overproducing strain was quantitatively compared with the wild-type doxorubicin producer based on the growth-phase-dependent doxorubicin productivity as well as doxorubicin biosynthetic gene expression profiles. The doxorubicin-specific DNA microarray chip data revealed the early-and-steady expressions of the doxorubicin-specific regulatory gene (dnrl), the doxorubicin resistance genes (drrA, drrB, drrC), and the doxorubicin deoxysugar biosynthetic gene (dnmL) are critical for the doxorubicin overproduction in S. peucetius. These results provide that the relationship between the growth-phase-dependent doxorubicin productivity and the doxorubicin biosynthetic gene expression profiles should lead us a rational design of molecular genetic strain improvement strategy.

G1 Arrest of U937 Human Monocytic Leukemia Cells by Sodium Butyrate, an HDAC Inhibitor, Via Induction of Cdk Inhibitors and Down-regulation of pRB Phosphorylation (Cdk inhibitors의 발현 증가 및 pRB 인산화 저해에 의한 HDAC inhibitor인 sodium butyrate에 의한 인체백혈병세포의 G1 arrest유발)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.871-877
    • /
    • 2009
  • We investigated the effects of sodium butyrate, a histone deacetylase inhibitor, on the cell cycle progression in human monocytic leukemia U937 cells. Exposure of U937 cells to sodium butyrate resulted in growth inhibition, G1 arrest of the cell cycle and induction of apoptosis in a dose-dependent manner as measured by MTT assay and flow cytometry analysis. The increase in G1 arrest was associated with the down-regulation in cyclin D1, E, A, cyclin-dependent kinase (Cdk) 4 and 6 expression, and up-regulation of Cdk inhibitors such as p21 and p27. Sodium butyrate treatment also inhibited the phosphorylation of retinoblastoma protein (pRB) and p130, however, the levels of transcription factors E2F-1 and E2F-4 were not markedly modulated. Furthermore, the down-regulation of phosphorylation of pRB and p130 by this compound was associated with enhanced binding of pRB and E2F-1, as well as p130 and E2F-4, respectively. Overall, the present results demonstrate a combined mechanism involving the inhibition of pRBjp130 phosphorylation and induction of Cdk inhibitors as targets for sodium butyrate that may explain some of its anti-cancer effects in U937 cells.

Protective Effects of an Ethanol Extract of Elaeagnus umbellata Leaves on α-MSH-induced Melanin Production in B16-F0 Cells and UVB-induced Damage in CCD-986sk Cells (보리수나무 잎 에탄올 추출물이 α-MSH 유도 B16-F0 세포의 멜라닌 생성 및 UVB 유도성 CCD-986sk 세포 손상에 미치는 효과)

  • Park, Se-Ho;Jhee, Kwang-Hwan;Yang, Seun-Ah
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.555-563
    • /
    • 2019
  • This study was undertaken to investigate the effect of an ethanol extract of Elaeagnus umbellata leaves (EUL-EE) on skin-related biological activities. Previously, we have reported that gallic acid was the major phenolic compound in EUL-EE through quantitative analysis and that EUL-EE had an inhibitory effect against the proliferation of liver cancer HepG2 cells. In the present study, the inhibitory effects of EUL-EE on melanin production and tyrosinase activity in ${\alpha}$-melanocyte-stimulated hormone-stimulated B16-F0 cells were determined to assess the effects of EUL-EE on skin whitening. The anti-wrinkle effect using UVB-irradiated CCD-986sk cells was examined by the expression of type I procollagen and metalloproteinase (MMP)-1 release. The EUL-EE significantly decreased intracellular melanin production (33.0% inhibition at $100{\mu}g/ml$) when compared with untreated B16-F0 cells. Tyrosinase activities in the stimulated B16-F0 cells were also decreased by EUL-EE (47.8% inhibition at $100{\mu}g/ml$). The EUL-EE also dose-dependently increased the production of type I procollagen (up to 1.74-fold at $250{\mu}g/ml$) in CCD-986sk cells when compared with UVB-irradiated controls. EUL-EE showed no cytotoxicity at concentrations up to $500{\mu}g/ml$. In addition, EUL-EE at $10-500{\mu}g/ml$ inhibited the release of MMP-1 to the medium from UVB-irradiated CCD-986sk cells. Taken together, these observations indicate that EUL-EE has high potential for use as inner beauty and cosmetic materials due to its whitening and anti-wrinkle effects.