Browse > Article
http://dx.doi.org/10.4014/mbl.1603.03002

Plumbagin Inhibits Expression of Virulence Factors and Growth of Helicobacter pylori  

Lee, Min Ho (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
Woo, Hyun Jun (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
Park, Min (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
Moon, Cheol (Department of Clinical Laboratory Science, Semyung University)
Eom, Yong-Bin (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University)
Kim, Sa-Hyun (Department of Clinical Laboratory Science, Semyung University)
Kim, Jong-Bae (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
Publication Information
Microbiology and Biotechnology Letters / v.44, no.2, 2016 , pp. 218-226 More about this Journal
Abstract
Helicobacter pylori primarily colonizes the human stomach. Infection by this bacterium is associated with various gastric diseases, including inflammation, peptic ulcer, and gastric cancer. Although there are antibiotic regimens for the eradication of H. pylori, the resistance of this species against antibiotics has been continuously increasing. The natural compound plumbagin has been reported as an antimicrobial and anticancer molecule. In this study, we analyzed the inhibitory effect of plumbagin on H. pylori strain ATCC 49503 as well as the expression of various molecules associated with H. pylori growth or virulence by immunoblotting and reverse transcription polymerase chain reaction (RT-PCR) analyses. We demonstrated the minimal inhibitory concentration of plumbagin on H. pylori through the agar dilution and broth dilution methods. Furthermore, we investigated the effect of plumbagin treatment on the expression of the RNA polymerase subunits and various virulence factors of H. pylori. Plumbagin treatment decreased the expression of RNA polymerase subunit alpha (rpoA), which is closely associated with bacterial survival. Moreover, the mRNA and protein levels of the major CagA and VacA toxins were decreased in plumbagintreated H. pylori cells. Likewise, the expression levels of urease subunit alpha (ureA) and an adhesin (alpA) were decreased by plumbagin treatment. Collectively, these results suggest that plumbagin may inhibit the growth, colonization, and pathogenesis of H. pylori by the mechanism demonstrated in this study.
Keywords
Helicobacter pylori; plumbagin; anti-microbial; virulence factor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Borin BN, Tang W, Krezel AM. 2014. Helicobacter pylori RNA polymerase alpha-subunit C-terminal domain shows features unique to varepsilon-proteobacteria and binds NikR/DNA complexes. Prot. Sci. 23: 454−463.   DOI
2 Cover TL, Blanke SR. 2005. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat. Rev. Microbiol. 3: 320−332.   DOI
3 Cover TL, Blaser MJ. 2009. Helicobacter pylori in health and disease. Gastroenterology 136: 1863−1873.   DOI
4 Dailidiene D, Tan S, Ogura K, Zhang M, Lee AH, Severinov K, et al. 2007. Urea sensitization caused by separation of Helicobacter pylori RNA polymerase beta and beta' subunits. Helicobacter. 12: 103−111.   DOI
5 de Paiva SR, Figueiredo MR, Aragao TV, Kaplan MA. 2003. Antimicrobial activity in vitro of plumbagin isolated from Plumbago species. Mem. Inst. Oswaldo. Cruz. 98: 959−961.   DOI
6 Eldhose B, Gunawan M, Rahman M, Latha MS, Notario V. 2014. Plumbagin reduces human colon cancer cell survival by inducing cell cycle arrest and mitochondria-mediated apoptosis. Int. J. Oncol. 45: 1913−1920.   DOI
7 Ghotaslou R, Leylabadlo HE, Asl YM. 2015. Prevalence of antibiotic resistance in Helicobacter pylori: A recent literature review. World J. Methodol. 5: 164−174.   DOI
8 Terradot L, Zawilak-Pawlik A. 2010. Structural insight into Helicobacter pylori DNA replication initiation. Gut. Microbes. 1: 330−334.   DOI
9 Solnick JV, Hansen LM, Syvanen M. 1997. The major sigma factor (RpoD) from Helicobacter pylori and other gram-negative bacteria shows an enhanced rate of divergence. J. Bacteriol. 179: 6196−6200.   DOI
10 Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fantl WJ, Covacci A. 2002. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol. Microbiol. 43: 971−980.   DOI
11 Sunil C, Duraipandiyan V, Agastian P, Ignacimuthu S. 2012. Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 50: 4356−4363.   DOI
12 Wang YC, Huang TL. 2005. High-performance liquid chromatography for quantification of plumbagin, an anti-Helicobacter pylori compound of Plumbago zeylanica L. J. Chromatogr A. 1094: 99−104.   DOI
13 Wiedemann T, Loell E, Mueller S, Stoeckelhuber M, Stolte M, Haas R, Rieder G. 2009. Helicobacter pylori cag-Pathogenicity island-dependent early immunological response triggers later precancerous gastric changes in Mongolian gerbils. PLoS One. 4: e4754.   DOI
14 Wu IT, Chuah SK, Lee CH, Liang CM, Lu LS, Kuo YH, et al. 2015. Five-year sequential changes in secondary antibiotic resistance of Helicobacter pylori in Taiwan. World J. Gastroenterol. 21: 10669−10674.   DOI
15 Zhang YX, Zhou LY, Song ZQ, Zhang JZ, He LH, Ding Y. 2015. Primary antibiotic resistance of Helicobacter pylori strains isolated from patients with dyspeptic symptoms in Beijing: a prospective serial study. World J. Gastroenterol. 21: 2786−2792.   DOI
16 Hatakeyama M. 2004. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat. Rev. Cancer. 4: 688−694.   DOI
17 Khaw AK, Sameni S, Venkatesan S, Kalthur G, Hande MP. 2015. Plumbagin alters telomere dynamics, induces DNA damage and cell death in human brain tumour cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 793: 86−95.   DOI
18 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. 1994. Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr. Eval. Carcinog. Risks Hum. 61: 1−241.
19 Kaewbumrung S, Panichayupakaranant P. 2014. Antibacterial activity of plumbagin derivative-rich Plumbago indica root extracts and chemical stability. Nat. Prod. Res. 28: 835−837.   DOI
20 Kalali B, Mejias-Luque R, Javaheri A, Gerhard M. 2014. H. pylori virulence factors: influence on immune system and pathology. Mediators Inflamm. 2014: 426309.
21 Kim SH, Park M, Woo H, Tharmalingam N, Lee G, Rhee KJ, et al. 2012. Inhibitory effects of anthocyanins on secretion of Helicobacter pylori CagA and VacA toxins. Int. J. Med. Sci. 9: 838−842.   DOI
22 Kimura M, Ishihama A. 1995. Functional map of the alpha subunit of Escherichia coli RNA polymerase: insertion analysis of the amino-terminal assembly domain. J. Mol. Biol. 248: 756−767.   DOI
23 Krajewska B. 2009. Ureases I. Functional, catalytic and kinetic properties: A review. J. Mol. Catal B Enzym. 59: 9−21.   DOI
24 Lee JW, Kim N, Kim JM, Nam RH, Chang H, Kim JY, et al. 2013. Prevalence of primary and secondary antimicrobial resistance of Helicobacter pylori in Korea from 2003 through 2012. Helicobacter. 18: 206−214.   DOI
25 Lee SW, Kim HJ, Kim JG. 2015. Treatment of Helicobacter pylori Infection in Korea: A Systematic Review and Meta-analysis. J. Korean Med. Sci. 30: 1001−1009.   DOI
26 Nitharwal RG, Verma V, Dasgupta S, Dhar SK. 2011. Helicobacter pylori chromosomal DNA replication: current status and future perspectives. FEBS Lett. 585: 7−17.   DOI
27 Li YC, He SM, He ZX, Li M, Yang Y, Pang JX, et al. 2014. Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells. Cancer Lett. 344: 239−259.   DOI
28 Mathew R, Chatterji D. 2006. The evolving story of the omega subunit of bacterial RNA polymerase. Trends Microbiol. 14: 450−455.   DOI
29 Nakayama M, Hisatsune J, Yamasaki E, Isomoto H, Kurazono H, Hatakeyama M, et al. 2009. Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. J. Biol. Chem. 284: 1612−1619.   DOI
30 Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287: 1497−1500.   DOI
31 Bornschein J, Malfertheiner P. 2014. Helicobacter pylori and gastric cancer. Dig. Dis. 32: 249−264.   DOI
32 Padhye S, Dandawate P, Yusufi M, Ahmad A, Sarkar FH. 2012. Perspectives on medicinal properties of plumbagin and its analogs. Med. Res. Rev. 32: 1131−1158.   DOI
33 Park BS, Lee HK, Lee SE, Piao XL, Takeoka GR, Wong RY, et al. 2006. Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori. J. Ethnopharmacol. 105: 255−262.   DOI
34 Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, et al. 2007. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447: 330−333.   DOI
35 Smolka AJ, Backert S. 2012. How Helicobacter pylori infection controls gastric acid secretion. J. Gastroenterol. 47: 609−618.   DOI