• Title/Summary/Keyword: Anti-aging Effect

Search Result 570, Processing Time 0.027 seconds

Skin Hydration Effect of Brasenia schreberi Mucilage Polysaccharide Extract (순채 점액질 다당체 추출물의 피부 보습 효과 연구)

  • Ahn, Seyeon;Gil, Soyeon;Kwon, Ohsun;Chang, Yunhee;Jin, Mu Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.3
    • /
    • pp.223-230
    • /
    • 2017
  • In this study, we evaluated the skin moisturizing effect of Brasenia schreberi (B. schreberi) mucilage polysaccharide on human skin and in vitro and the potent cosmetic ingredient for skin. To protect skin from various environmental stresses and aging, we should increase moisture content of skin and prevent water loss. We have found that polysaccharides extracted from mucilage of B. schreberi improved the roughness of skin with its lubricating behavior. In vitro, the expression of transglutaminase 1 (TGM1) gene, which plays a role in cross-linking the skin barrier, was increased when the keratinocytes were treated with B. schreberi polysaccharides. In addition, the expression of hyaluronan synthase 3 (HAS3) gene, an enzyme that synthesizes water-binding matrix hyaluronic acid, aquaporin 3 (AQP3), which regulates the movement of water and glycerol were also increased. In addition, an experiment to evaluate its potential as a cosmetic ingredient has shown anti-inflammatory and collagen synthesis-promoting effects. As a result, the mucilaginous polysaccharide from natural products which has not existed before, showed moisturizing effect, anti-inflammation and collagen synthesis-promoting effects for skin protection and hydration.

Protective Effects of Pyrus pyrifolia NAKAI Leaf Extracts on UVB-induced Toxicity in Human Dermal Fibroblasts (자외선B 노출로 인해 손상된 피부세포에 대한 돌배나무잎 추출물의 보호효과)

  • Koh, Ara;Choi, Songie;Kim, Yong-ung;Park, Gunhyuk
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.87-94
    • /
    • 2016
  • Skin damage is mainly caused by environmental factors such as ultraviolet light, heat, and smoking. It is known that reactive oxygen species production is commonly involved in the pathogenesis of skin damage induced by these factors, causing skin aging. Pyrus pyrifolia Nakai continues to be a popular and highly consumed fruit in many countries with known beneficial effects including antitumor, antioxidative, and anti-inflammatory effects. However, there is no evidence of a therapeutic effect of Pyrus pyrifolia extract (PPE) against skin aging via inhibition of mitochondria-mediated apoptosis. In this study, we investigated PPE protective effect against photoaging induced by UVB ($50mJ/cm^2$) in HS68 human dermal fibroblasts. Lactate dehydrogenase assay showed that PPE significantly protected HS68 cells against UVB-induced damage in a dose-dependent manner. Other assays using DCF-DA demonstrated that PPE protected HS68 cells by regulating reactive oxygen species production. PPE also regulated mitochondrial dysfunction and mitochondrial membrane potential induced by UVB, and inhibited UVB-induced caspase-3 activity. These results indicate that PPE protects human dermal fibroblasts from UVB-induced damage by regulating the oxidative defense system.

Anti-Graying Effect of Pueraria Lobata Root Extract on Stress-Induced Hair Graying (갈근 추출물의 스트레스성 백모 형성 억제 효과)

  • Hong, Min Jung;Park, Byung Cheol;Hong, Yong Deog;Kim, Su Na
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.287-293
    • /
    • 2022
  • Gray hair is a representative sign of aging. Intrinsic aging, stress, and the external environment cause hair graying. Stress is known to be a major factor in the early onset of hair graying. We previously found that Pueraia lobata root extract (PLRE) can prevent hair graying by promoting melanin formation. However, it remains unknown whether PLRE can prevent hair graying induced by conditions of stress. In this study, we confirmed the effect of PLRE on stress-induced hair graying. A reporter cell line was newly constructed to confirm the expression of microphthalamia-associated transcription factor (MITF), the main transcription factor for melanin production. MITF expression and melanin pigmentation were reduced in human hair follicle tissue treated with the stress hormone cortisol or H2O2 to induce oxidative stress. PLRE treatment restored MITF expression and increased the amount of melanin pigment in the hair follicle. The expression of Tyrosinase related proteins-2 (TRP-2), a melanin synthesis enzyme in the hair follicle, also increased. In conclusion, PLRE can effectively prevent the inhibition of melanin synthesis by stress hormones and oxidative stress.

Study on the Antioxidative Activities and Anti-Inflammatory Effect of Kaempferol and Kaempferol Rhamnosides (Kaempferol 및 Kaempferol Rhamnosides의 항산화 활성 및 항염 효과에 관한 연구)

  • Lee, Keun-Ha;Cho, Young-Long;Joo, Chul-Gue;Joo, Yeon-Jeong;Kwon, Sun-Sang;Ahn, Soo-Mi;Oh, Su-Jin;Rho, Ho-Sik;Park, Chung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • In this study, to evaluate the antioxidative activities and anti-inflammatory effects of kaempferol and its rhamnosides, we performed the free radical scavenging assay, ROS inhibition assay and TARC (thymus and activation-regulated chemokine) assay. Also, we studied physiological activity of kaempferol and its rhamnosides (${\alpha}$-rhamnoisorobin, afzelin, kaempferitn) by structure-activity relations. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities were determined with kaempferol (62.5 ${\mu}M$) and ${\alpha}$-rhamnoisorobin (50.0 ${\mu}M$) but afzelin and kaempferitrin did not show free radical scavenging activities. Kaempferol showed a 97.5, 57.8, 47.8 % inhibition of ROS (reactive oxygen species) generated at concentrations of 10, 50 and 100 ${\mu}M$, compared to control (100 %). ${\alpha}$-rhamnoisorobin showed a 93.1, 59.1 and 41.4 % inhibition of ROS at the same concentration. We investigated the inhibitory effects of kaempferol and its rhamnosides on TARC expression. Kaempferol showed a 48.8, 5.5 and 4.4 % inhibition of TARC generated at 10, 50 and 100 ${\mu}M$, compared to control. ${\alpha}$-Rhamnoisorobin showed a 88.1, 19.0 and 1.0 % inhibition of TARC generated at the same concentration. In conclusion, these results indicate that kaempferol and ${\alpha}$-rhamnoisorobin have good antioxidative activities and anti-inflammatory effects that could be applicable to new functional cosmetics for anti-aging and anti-inflammation.

Anti-inflammatory Efficacy and Liver Protective Activity of Pine Pollen according to Probe Sonicator Ultrasonic Disintegration Extraction Method (송화분의 초음파 파쇄 추출 방법에 따른 항염증 효능 및 간 보호 활성)

  • Kim, Ok Ju;Woo, Young Min;Jo, Eun Sol;Jo, Min Young;Li, Chun-Ri;Lee, Young-Ho;Ahn, Mee Young;Lee, Sang-Hyeon;Ha, Jong Myung;Kim, Andre
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.569-579
    • /
    • 2019
  • In this study, the effect anti-oxidant, anti-inflammatory, and liver protective activity was investigated via quick ultrasonic disintegration of pine pollen using a probe sonicator (PS) followed by the extraction with water, 70% ethanol, and 100% ethanol. The anti-inflammatory effect was studied by measuring the production of nitric oxide (NO) and cytokine in RAW264.7 cells induced with lipopolysaccharides (LPS). The cell toxicity was also checked with an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the experiment was conducted using non-toxic $100{\mu}g/mL$. The NO inhibition rate was highest in the 70% ethanol PS group at $85.99{\pm}0.12%$. Also an excellent efficiency was obtained from the results of interlukin-1 beta ($IL-1{\beta}$) and tumor necrosis factor alpha ($TNF-{\alpha}$), which is related to inflammation-related cytokine, with the respective inhibition rates of 63 and 22%. To examine liver protective activity, HepG2 cells were treated with Taclin, and the generation of glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH) was measured in the culture solution. From GOT and LDH generation results, the inhibition rates in the 70% ethanol PS group were 28% and 13%, respectively, which was higher compared to that of using negative control group. Our results suggest that pine pollen extracted in 70% ethanol using PS may be used to develop food products that have anti-aging, anti-inflammatory, and liver protective effects.

Anti-wrinkling Effects of Juniperus rigida Sied (노간주나무(Juniperus rigida Sieb.)의 주름개선 효과)

  • Jun, Hye-Ji;Lee, Soo-Yeon;Kim, Jeung-Hoan;An, Bong-Jeun;Lee, Jin-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.449-455
    • /
    • 2013
  • Human skin is constantly exposed to environmental conditions such as UV rays, polluted air, and chemical products. UV rays, in particular, affect skin in many ways causing wrinkles, fine wrinkles, rough skin, and xeroderma through a skin aging process. The purpose of this study was to investigate the anti-wrinkling effect of Juniperus rigida Sieb., derived from a common cedar tree found the world over. Measuring the elastase to investigate wrinkling efficacy, it was shown that at a concentration level of $1,000{\mu}g/ml$ of the two extracts, the water extract exhibited a lower than 10% inhibition activity, while the ethanol extract exhibited a 68.5% inhibition activity. Collagenase inhibition activity in the water extract and ethanol extract were 44.9% in the former and 97.2% in the latter extract, which in the case of the ethanol extract, is similar to ascorbic acid (99.6%). Moreover, measuring the biosynthesis of collagen by fibroblast, a concentration level of $50{\mu}g/ml$ of ethanol extract produced 151.52% of biosynthetic promotion, proving that the ethanol extract acts as a superb anti-wrinkling agent. The result of an investigation conducted on the influence of the ethanol extract on MMP-1 caused by UVA showed that at a concentration level of $1,00{\mu}g/ml$ of the ethanol extract of J. rigida Sieb a 67.1% inhibition activity was noted. At a concentration level of $50{\mu}g/ml$ of the ethanol extract of J. rigida Sieb a 35% and 39% inhibition ratio to MMP-1 protein and mRNA were observed respectively, thereby restraining the appearance of the collagen breakdown enzyme MMP-1 and wrinkle creation by skin photo-aging.

Effects of Myelophycus Simplex Papenfuss Methanol Extract on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (바위수염 메탄올 추출물이 3T3-L1 지방전구세포의 분화에 미치는 영향)

  • Kim, Hyang Suk;Kwon, Da Hye;Cheon, Ji Min;Choi, Eun Ok;Kim, Ji Hyun;Han, Min Ho;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.62-67
    • /
    • 2015
  • Myelophycus simplex Papenfuss is distributed over the northern Pacific and southern coast of Korea, and is a member of the brown algae family. The objective of this study was to investigate the effect of M. simplex methanol extract on adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. Treatment with M. simplex methanol extract significantly suppressed terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet content observed by Oil Red O staining. Also, the M. simplex methanol extract significantly suppressed the triglyceride content of 3T3-L1 preadipocytes in a dose-dependent manner. Treatment with 300 and $500{\mu}g/ml$ of M. simplex methanol extract caused a 42% and 76% reduction in lipid droplet content, respectively. In order to understand the anti-adipogenic effects of M. simplex methanol extract, the changes in the expression of several adipogenic transcription factors, including peroxisome proliferator-activated receptor (PPAR) ${\gamma}$-cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding protein (C/EBP) ${\alpha}$ and ${\beta}$, were investigated using immunoblotting. M. simplex suppressed the expression of $PPAR{\gamma}$, $C/EBP{\alpha}$, and $C/EBP{\beta}$ proteins compared with control. Therefore, the results of this study suggest that M. simplex methanol extract inhibits adipocyte differentiation and thus may have applications as a potential source for an anti-obesity functional food agent.

Cytoprotective Effects of Schisandrin A against Hydrogen Peroxide-induced Oxidative Stress in SW1353 Human Chondrocytes (SW1353 인간 연골세포에서 산화적 스트레스에 대한 schisandrin A의 세포 보호 효과)

  • Jeong, Jin-Woo;Choi, Eun Ok;Kwon, Da Hye;Kim, Bum Hoi;Park, Dong Il;Hwang, Hye Jin;Kim, Byung Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1070-1077
    • /
    • 2017
  • Chondrocyte apoptosis induced by reactive oxygen species (ROS) plays an important role in the pathogenesis of osteoarthritis. Schisandrin A, a bioactive compound found in fruits of the Schisandra genus, has been reported to possess multiple pharmacological and therapeutic properties. Although several studies have described the antioxidant effects of analogues of schisandrin A, the underlying molecular mechanisms of this bioactive compound remain largely unresolved. The present study investigated the cytoprotective effect of schisandrin A against oxidative stress (hydrogen peroxide [$H_2O_2$]) in SW1353 human chondrocyte cells. The results showed that schisandrin A preconditioning significantly inhibited $H_2O_2-induced$ growth inhibition and apoptotic cell death by blocking the degradation of poly (ADP-ribose) polymerase proteins and down-regulating pro-caspase-3. These antiapoptotic effects of schisandrin A were associated with attenuation of mitochondrial dysfunction and normalization of expression changes of proapoptotic Bax and antiapoptotic Bcl-2 in $H_2O_2-stimulated$ SW1353 chondrocytes. Furthermore, schisandrin A effectively abrogated $H_2O_2-induced$ intracellular ROS accumulation and phosphorylation of histone H2AX at serine 139, a widely used marker of DNA damage. Thus, the present study demonstrates that schisandrin A provides protection against $H_2O_2-induced$ apoptosis and DNA damage in SW1353 chondrocytes, possibly by prevention of ROS generation. Collectively, our data indicate that schisandrin A has therapeutic potential in the treatment of oxidative disorders caused by overproduction of ROS.

Effects of $\beta$-Carotene Supplementation on Lipid Peroxide Levels and Antioxidative Enzyme Activities in Diabetic Rats ($\beta$-Carotene 첨가식이가 당뇨쥐의 지질과산화물 수준과 항산화효소 활성에 미치는 영향)

  • 이완희;천종희
    • Journal of Nutrition and Health
    • /
    • v.36 no.7
    • /
    • pp.675-683
    • /
    • 2003
  • This study investigated the effect of dietary $\beta$-carotene supplementation on lipid peroxidation and anti oxidative enzyme activity as indices of oxidative stress in diabetic rats. Fifty Sprague-Dawley male rats aging 7 weeks were used as experimental animals, which were divided into the non-diabetic control group and the diabetic group. The diabetic group received an intraperitoneal injection with streptozotocin to induce diabetes. Then the diabetic rats were divided into four dietary groups which contained different amounts of $\beta$-carotene; 0%, 0.002%, 0.02%, or 0.2% of the diet. The diabetic rats were fed the experimental diets and the non-diabetic rats were fed the basal diet without $\beta$-carotene supplementation for 2 weeks and then sacrificed. The diabetic group had a significantly higher blood glucose level than the non-diabetic group. However, blood glucose level were not significantly changed by the level of dietary $\beta$-carotene supplementation. Compared to the non-diabetic control group, the diabetic control group indicated a significant increase of plasma thiobarbituric acid reactive substance (TBARS). Liver TBARS level also tended to be higher in diabetic control group, although it was not significant. The $\beta$-carotene supplementation did not reduce plasma TBARS level. However, Liver TBARS level was significantly decreased when 0.02% or more $\beta$-carotene was supplemented in the diet. The liver lipofuscin level in the diabetic control group was higher than in the non-diabetic control group, but the effect of $\beta$-carotene supplementation did not show any differences. Superoxide dismutase activity was significantly lower in the diabetic group, but it was increased in groups receiving 0.02% or more $\beta$-carotene. Compared to the non-diabetic control group, lower activities of catalase and glutathione peroxidase were observed in the diabetic control group, although it was not significant. Catalase and glutathione peroxidase activities tended to increase as the levels of $\beta$-carotene supplementation increased, although it was not statistically significant. Therefore, it seems that dietary $\beta$-carotene supplementation might reduce diabetic complications by partly decreasing the lipid peroxidation and increasing the activity of antioxidative enzyme in diabetes.

Investigation of the Antioxidant Effect of Angelicae Radix from Korea, China and Japan (참당귀, 중국당귀, 일당귀의 차등적 항산화 효능 연구)

  • Cho, Nam Joon;Lee, Woong Hee;Kim, Kee Kwang;Han, Hyo Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.182-187
    • /
    • 2017
  • The purpose of the present study is a comparison of the antioxidant effects of Angelica gigas Korea (AG), Angelica sinensis of China (AS), and Angelica acutiloba of Japan (AA), and comparison of the effects of AG, AS and AA on tight-junction related genes in human keratinocyte HaCaT cells. All species showed a strong antioxidant effect, and AA was higher than AG and AS in antioxidant effects. The cytotoxicity was confirmed to be higher in AS than AG and AA at a concentration of $1,600{\mu}g/ml$ using the MTS assay in HaCaT cells. We analyzed the effects of AG, AS, and AA on mRNA expression levels of various tight-junction related genes in HaCaT cells. We found that no obvious changes in expression of Claudin 1, 3, 4, 6, 7, 8, Occludin, JAM-A, ZO-1, ZO-2, and tricellulin by treatment of all species, suggesting that there is less possibility of side effects and skin moisturizing effects due to changes in tight-junction gene expression. Our results suggest that AG, AS, and AA are thought to be effective in reducing the oxidative stress of the skin and preventing the aging of the skin.