• Title/Summary/Keyword: Anti-Diabetic Activity

Search Result 281, Processing Time 0.033 seconds

A Study on the Glucose-regulating Enzymes and Antioxidant Activities of Water Extracts from Medicinal Herbs (한약재의 물 추출물이 당대사 관련 효소와 항산화 활성에 관한 연구)

  • Choe, Myeon;Kim, Dae-Jung;Lee, Hyeon-Ju;You, Jin-Kyoun;Seo, Dong-Joo;Lee, Joon-Hee;Chung, Mi-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.5
    • /
    • pp.542-547
    • /
    • 2008
  • The anti-diabetic effects of water extracts (WE) from medicinal herbs on hepatic glucose-regulating enzymes, such as glucokinase (GCK), pyruvate dehydrogenase (PDH), acetyl-CoA carboxylase (ACC) and ${\alpha}$-glucosidase, were studied using the cytosol fraction in liver and mitochondia fraction in heart of a type II diabetic animal (GK rat, Goto-Kakizaki). The free radical scavenging activity of water extracts by DPPH method was also tested. We found that free radical scavenging activity was strong in Corni fructu (CF), Mokdan Bark (MDB), Chenhwabon (CHB) and Sanyack (SY), while that of Backbocreng (BBR), Shuckgihwang (SGH) and Taecsa (TS) was lower. For GCK activity in cytosol of liver, CF and CHB had a more effective activity than other extracts. PDH activity in mitochondria fraction of heart was higher in all of the extracts, expect for the TS extract, than in the control. ACC activity in cytosol fraction of liver was significantly higher in the CF, CHB, SGH, TS and SY extracts than in the control. CF, BBR and MDB led to a decrease in the ${\alpha}$-glucosidase activity. Therefore, these results suggest that all of the extracts may be used as functional material in the development as anti-diabetic functional food and medicine.

Effects of Hanbag Mushroom(Grifola frondosa) on Oxidative Stress in Diabetic Rats (당뇨유발 흰쥐에 있어서 산화적 스트레스에 대한 함박잎새버섯의 효과)

  • Lee, Soon-Yi;Lee, Chang-Yun;Park, Yeong-Chul;Kim, Jong-Bong
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1571-1575
    • /
    • 2007
  • This research was carried out to investigate the effects of Hambag mushroom on the oxidative stress in diabetic rats, Sprague-Dawley. The diabetic rats induced by streptozotocin were fed with hambag mushroom-powder(G. frondosa) for 6 weeks. For the level of oxidative stress in liver and pancreas tissues, it was studied by measuring LPO (lipid oxide) level as an indicator of lipid peroxidation, XOD(xanthine oxidase) as one of important sources for free radicals and the levels of GSH and GST as anti-oxidant systems. Also, as an indicator of liver damaged by oxidative stress, the activities of serum ALT and AST were measured. It was observed that the levels of ALT, AST, LPO and XOD were higher by about two times in both tissues from diabetic rats than in those from control rats. This indicates that the oxidative stress induced by diabetes caused the tissues damages. However, these levels were decreased in the tissues from rats with hambag mushroom-powder. Futhermore, the activity of GST were higher in both tissues from diabetic rats fed with hambag mushroom-powder than in those from diabetic rats. Thus, it is considered that the hambag mushroom-powder decreases the level of oxidative stress by increasing activity of anti-oxidant system such as GSH and GST. It is suggested that the hambag mushroom-powder can be useful for preventing the tissues damaged by diabetes-induced oxidative stress.

Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

  • Sung, Nak Yoon;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$ in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-${\kappa}B$-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-${\kappa}B$ nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-${\kappa}B$ activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-${\kappa}B$ activation.

Morus Nigra Extract Attenuates Cognition Impairment and GABAergic Interneuron Degeneration in Aged Rat Brain

  • Lee, Joo Hee;Kim, Yoonju;Song, Min Kyung;Kim, Youn-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.24 no.2
    • /
    • pp.77-85
    • /
    • 2022
  • Purpose: Aging process comes with cognitive impairment due to decreased neuronal cell number, activity, and neuronal circuit. Alteration of inhibitory neurons contributes to cognitive impairment in normal aging and is responsible for disrupting the excitation/inhibition balance by reducing the synthesis of gamma-aminobutyric acid (GABA). Morus nigra (Mulberry) is a natural physiologically active substance that has been proven to have anti-oxidant, anti-diabetic, and anti-inflammatory effects through many studies. This study aimed to evaluate the effects of the mulberry extract (ME) on cognitive function through anti-oxidant enzyme and GABAergic neuronal activity in aged rat brain. Methods: Sprague Dawley rats were randomly assigned as the young group (8 weeks, n= 8), aging group (67 weeks, n= 8), and aging+ mulberry extract group (67 weeks, n= 8). The aging+ mulberry extract group was orally administered 500 mg/kg/d mulberry extract for 6 weeks. Results: The aging+ mulberry extract group improved spatial and short-term memory. The antioxidant potential of ME increased the expression of superoxide dismutase-1 (SOD-1) and decreased inducible nitric oxide synthase (iNOS). Also, the aging+ mulberry extract group significantly increased the expression of GABAergic interneuron in hippocampus cornu ammonis1 (CA1) compared to the aging group. Conclusion: The number of GABAergic inhibitory interneurons was deceased and memory functions in the aging process, but those symptoms were improved and restored by mulberry extract administration.

Influence of Age and Fasting on the Anti-hyperglycemic Effect of Onion in Normal and Diabetic rat (정상 및 당뇨 흰쥐에서 주령과 절식에 의한 양파의 혈당조절작용 변화)

  • 문창현;정이숙;김민화;이수환;백은주;박세원
    • Biomolecules & Therapeutics
    • /
    • v.5 no.4
    • /
    • pp.364-368
    • /
    • 1997
  • Onion (Allium cepa Linn) has been reported to have hypoglycemic activity in human and several animal models. In the present study, we performed intraperitoneal glucose tolerance test (IPGTT) in young (1.5mo) and aged (5 mo) rats treated with onion in order to determine whether aging can influence on the anti-hy-perglycemic effect of onion. In addition, we investigated the hypoglycemic effect of onion in streptozotocin- induced diabetic rats treated with aqueous extracts of onion (500 mg/kg, i.p., daily) for 4 weeks. Blood glucose level was determined in fasted and fed rats by using a glucometer (Johnson & Johnson). In glucose tolerance test, blood glucose level was maximally increased 15 min after glucose load (2 g/kg, i.p.), and recovered to the basal level 3 hr after glucose challenge in young and old rats. The maximum blood glucose levels of young and aged rat were 184$\pm$7.49 and 225.2$\pm$ 12.55 mg/dl, respectively. A single i.p. injection of aqueous extract of onion (1 g/kg) 30 min before glucose challenge significantly decreased blood glucose levels at 15, 30, 60, 90 min after glucose load in aged rats, while the administration of onion did not show any significant effect in young rats. In onion-treated diabetic rats, significant hypoglycemic effect (p<0.05) was observed, and the effect was greater in fasted rats than in fed. In conclusion, these results suggest that anti-hyperlycemic effect of onion can be changed by age and fasting.

  • PDF

Antidiabetic Activity of Ginsam in db/db Mouse (긴삼의 db/db 마우스에서 항당뇨 효과)

  • Han, Eun-Jung;Park, Keum-Ju;Choi, Yun-Sook;Han, Ki-Chul;Park, Jong-Suk;Lee, Kyung-Hee;Ko, Sung-Kwon;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.50 no.5
    • /
    • pp.332-337
    • /
    • 2006
  • Type 2 diabetes mellitus is a chronic and hard to control disease. In order to develop the therapeutic agent for type 2 DM, many researchers investigated natural products using an in vitro and in vivo assay. In this study, we tried to explore the anti-diabetic activity and mechanisms of ginsam, which is a vinegar-processed ginseng radix. The db/db mice were randomly divided into four groups. The diabetes control (DC) group was orally administrated with distilled water, ginseng radix (GR) or ginsam (GS) was administrated orally at a dose of 150 mg/kg, and the positive control group was orally injected with metformin (MET) at a dose of 300 mg/kg for 5 weeks in db/db mice and measured body weight and blood glucose level every week. All treatment groups decreased the plasma glucose levels compared with diabetic control and GS group significantly lowered the insulin resistance index. GS group also reduced the plasma lipid levels mainly due to reduce the lipogenesis and increase the lipolysis in the fat tissue. In addition, GS group increased the GLUT4 mRNA expression levels in the fat and muscle tissues by 10 fold probably due to increase a $PPAR_{-\gamma}$ mRNA expression in fat tissue. Taken together, GS showed the anti-hyperglycemic and anti-hyperlipidemic activities and those activities may ascribe to over-expression of GLUT4 mRNA level and decrease the lipogenesis in fat tissue.

Anti-glycation effect and renal protective activity of Colpomenia sinuosa extracts against advanced glycation end-products (AGEs) (불레기말(Colpomenia sinuosa)의 최종당화산물 저해 효능 및 신장 보호 효과)

  • Kim, Mingyeong;Cho, Chi Heung;Kim, Sera;Choi, In-Wook;Lee, Sang-Hoon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.94-103
    • /
    • 2021
  • Here, we evaluated the anti-glycation effects and renal protective properties of 70% (v/v) ethanolic extract of Colpomenia sinuosa (CSE) against AGEs -induced oxidative stress and apoptosis at different concentrations (1, 5, and 20 ㎍/mL). At 20 ㎍/mL, CSE showed that anti-glycation activities via the inhibition of AGE formation (51.1%), inhibition of AGEs-protein cross-linking (61.7%), and breaking of AGEs-protein cross-links (33.3%), were significantly (###p < 0.001 vs. non-treated group) lower than the nontreated group. Methylglyoxal (MGO) significantly (***p < 0.001) reduced cell viability (24.4%) and increased reactive oxygen species (ROS) level (642.3%), MGO accumulation (119.4 ㎍/mL), and apoptosis (55.0%) in mesangial cells compared to the nontreated group. Pretreatment with CSE significantly (###p < 0.001) increased cell viability (57.8%) and decreased intracellular ROS (96.5%), MGO accumulation (80.0 ㎍/mL), and apoptosis (22.6%) at 20 ㎍/mL. Additionally, we confirmed intracellular AGEs reduction by CSE pretreatment. Consequently, our results suggest that CSE is a good source of natural therapeutics for managing diabetic complications by the antiglycation effect and renal protective activity against MGO-induced oxidative stress.

Anti-Oxidative and Anti-Diabetic Effects of Methanol Extracts from Medicinal Plants (약용식물 메탄올 추출물의 항산화 및 항당뇨 활성)

  • Lee, Youn Ri;Yoon, Nara
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.681-686
    • /
    • 2015
  • The purpose of this study was to measure total phenolic compounds as a measure of antioxidant activity as well as ${\alpha}$-amylase inhibitory and ${\alpha}$-glucosidase inhibitory activities as a measure of anti-diabetic efficacy in methanol extracts from 23 kinds of medicinal plants. Extracts of three medicinal plant species showing high total polyphenol contents were selected (Euonymus alatus stem, Taxus cuspidata fruit, and Eucommia ulmoides leaf). Extracts of six medicinal plant species showing over 60% DPPH radical scavenging activity were also selected [Eucommia ulmoides barks (80.10%), Lycium chinense roots (64.25%), Euonymus alatus stem (73.59%), Lespedeza cuneata (78.20%), Taxus cuspidata fruits (70.52%), and Tilia taquetii leaf and stem (67.81%)]. Regarding ${\alpha}$-glucosidase and ${\alpha}$-amylase inhibitory activities acarbose showing approximately 80% inhibitory activity was selected as a control group, and six species (Eucommia ulmoides heartwood, Eucommia ulmoides bark, Euonymus alatus stem, Dioscorea batatas, Coix lachryma-jobi, and Phaseolus radiatus) showed greater than 80% ${\alpha}$-glucosidase inhibitory activity. Extracts of nine medicinal plant. species showing over 80% ${\alpha}$-amylase inhibitory activity (Pueraria thunbergiana root, Eucommia ulmoides bark, Eucommia ulmoides leaf, Lycium chinense fruits, Euonymus alatus leaf and stem, Euonymus alatus stem, Sasa borealis whole, Dioscorea batatas leaf and stem, and Tilia taquetii leaf and stem). Based on these results, medicinal plants showing high antioxidant and antidiabetic activities can be used as fundamental products in developing new medicines, as well as functional foods to prevent adult disease.

Comparison Analysis of Biological Activities of Three Sedum species

  • Lee, Dong Gyu;Yu, Seung Bin;Jeong, Hye Jeong;Kang, Young-Hwa
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.96-96
    • /
    • 2019
  • Sedum kamchaticum, Sedum middendorffianum and Sedum takesimense belong to the sebum species. Especially, Sedum takesimense is a Korean native species growing only on Ullenung-do. Few studies for the biological activities of these plants have been reported. In this study, we examined biological activity and the contents of functional components of the aerial part and the root part of Sedum kamchaticum, Sedum middendorffianum and Sedum takesimense. As the results, the roots of Sedum takesimense showed the highest total phenolic contents (TPC : $13040{\pm}50.0mg\;GAE{\cdot}100g^{-1}$), and the aerial part of Sedum takesimens showed the highest total flavonoid contents (TFC : $2722.2{\pm}107.1mg\;CAE{\cdot}100g^{-1}$). Meanwhile, Sedum middendorffianum exhibited the highest anti-oxidant activity (DPPH $RC_{50}$ value of aerial part : $50.69{\pm}0.75{\mu}g{\cdot}mL^{-1}$, DPPH $RC_{50}$ value of root part : $27.27{\pm}0.55{\mu}g{\cdot}mL^{-1}$; ABTS $RC_{50}$ value of aerial part : $11.32{\pm}0.38{\mu}g{\cdot}mL^{-1}$, ABTS $RC_{50}$ value of roots part $5.54{\pm}0.02{\mu}g{\cdot}mL^{-1}$). The root part of Sedum middendorffianum showed the potent alpha glucosidase inhibitory activity (AGI $IC_{50}$ : $60.69{\pm}0.72{\mu}g{\cdot}mL^{-1}$). In order to elucidate active principle of Sedum middendorffianum that was shown the most potent antioxidant and anti-diabetic activities, the methanol extract of Sedum middendorffianum was fractionated with various solvents according to the polarity successively. As a result, EtOAc fraction of Sedum middendorffianum showed the highest contents of functional components (TPC : $16245.8{\pm}1025.7mg\;GAE{\cdot}100g^{-1}$, TFC : $4850.4{\pm}182.9mg\;CAE{\cdot}100g^{-1}$). And it also showed excellent anti-oxidant activities (DPPH $RC_{50}$ : $14.0{\pm}0.6{\mu}g{\cdot}mL^{-1}$, ABTS $RC_{50}$ : $3.4{\pm}0.1{\mu}g{\cdot}mL^{-1}$) and anti-diabetic activity (AGI $IC_{50}$ : $79.0{\pm}2.2{\mu}g{\cdot}mL^{-1}$). Above results suggest that Sedum middendorffianum can be developed to health functional material as a plant resource with potent antioxidant activity.

  • PDF

Anti-Diabetic, Alcohol Metabolizing Enzyme, and Hepatoprotective Activity of Acer tegmentosum Maxim. Stem Extracts (산겨릅나무 줄기 추출물의 항당뇨, 알코올 대사 효소 및 간 보호 활성)

  • Cho, Eun Kyung;Jung, Kyung Im;Choi, Young Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1785-1792
    • /
    • 2015
  • This study was carried out to investigate the antidiabetic, alcohol metabolism, anti-inflammatory, and hepatoprotective effects of Acer tegmentosum extracts (ATE). A. tegmentosum has been traditionally used as a folk medicine to treat hepatic disorders. The antioxidative activities of ATE were measured by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and superoxide (SOD) assay. DPPH radical scavenging and SOD activities of ATE were about 89% and 82.9% at $0.5{\mu}g/mL$, respectively. Alcohol dehydrogenase and acetaldehyde dehydrogenase activities were 118.0% and 177% at 2 mg/mL, respectively. ${\alpha}-Glucosidase$ inhibitory activity of ATE was 75% higher at $50{\mu}g/mL$ and remarkably increased in a dose-dependent manner. Nitric oxide productions in macrophage RAW 264.7 cells stimulated by lipopolysaccharide was reduced to 16.7% by addition of ATE at 1 mg/mL. ATE showed significant protective effects against tacrine-induced cytotoxicity in Hep G2 cells at $100{\mu}g/mL$. Based on our results, we conclude that ATE may be used as a major pharmacological agent and anti-diabetic, anti-hepatitis, and anti-inflammatory remedy.