Acknowledgement
본 연구성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단(NRF-2020R1A2C201260811)의 지원을 받아 수행된 연구임
References
- Rabbani, N. and P.J. Thornalley, 2018. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney international, 93. 803-813.
- Rowan, S., E. Bejarano and A. Taylor, 2018. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864. 3631-3643. https://doi.org/10.1016/j.bbadis.2018.08.036
- Vistoli, G., D. De Maddis, A. Cipak, N. Zarkovic, M. Carini and G. Aldini, 2013. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free radical research, 47. 3-27. https://doi.org/10.3109/10715762.2013.815348
- Huebschmann, A.G., J.G. Regensteiner, H. Vlassara and J.E. Reusch, 2006. Diabetes and advanced glycoxidation end products. Diabetes care, 29. 1420-1432. https://doi.org/10.2337/dc05-2096
- Khalifah, R.G., J.W. Baynes and B.G. Hudson, 1999. Amadorins: novel post-Amadori inhibitors of advanced glycation reactions. Biochemical and biophysical research communications, 257. 251-258. https://doi.org/10.1006/bbrc.1999.0371
- Edelstein, D. and M. Brownlee, 1992. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes, 41. 26-29. https://doi.org/10.2337/diab.41.1.26
- Thornalley, P.J., 2003. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Archives of biochemistry and biophysics, 419. 31-40. https://doi.org/10.1016/j.abb.2003.08.013
- El Gamal, A.A., 2010. Biological importance of marine algae. Saudi pharmaceutical journal, 18. 1-25. https://doi.org/10.1016/j.jsps.2009.12.001
- Lee, C.-H., Y.N. Park and S.G. Lee, 2020. Analysis and comparison of bioactive compounds and total antioxidant capabilities of Korean brown algae. Korean Journal of Food Science and Technology, 52. 54-59. https://doi.org/10.9721/KJFST.2020.52.1.54
- Pangestuti, R. and S.-K. Kim, 2011. Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of functional foods, 3. 255-266. https://doi.org/10.1016/j.jff.2011.07.001
- Ponnudurai, G. and J.J.P. Paul, 2020. GC-MS Analysis of Methanolic Extract of Colpomenia Sinuosa (Mertens Ex Roth) Derb. Et Sol. From Manapad in the South East Coast of Tamil Nadu, India. Asian Journal of Pharmaceutical Research and Development, 8. 41-43.
- Lekameera, R., P. Vijayabaskar and S. Somasundaram, 2013. Evaluating antioxidant property of brown alga Colpomenia sinuosa (DERB. ET SOL). African Journal of Food Science, 2. 126-130.
- Ramarajan, L., S.T. Somasundaram, S. Subramanian and V. Pandian, 2012. Nephroprotective effects of Colpomenia sinuosa (Derbes & Solier) against carbon tetrachloride induced kidney injury in Wistar rats. Asian Pacific Journal of Tropical Disease, 2. S435-S441. https://doi.org/10.1016/S2222-1808(12)60199-6
- Lee, J., B. Kim, M.-H. Park, K.-H. Choi, C. Kong, S.-H. Lee, Y.Y. Kim, K.H. Yu and M. Kim, 2016. Effects of Colpomenia sinuosa extract on serum lipid level and bone formation in ovariectomized rats. Journal of the Korean Society of Food Science and Nutrition, 45. 492-500. https://doi.org/10.3746/JKFN.2016.45.4.492
- S.-C. Ko, S.-H. Lee, S.-M. Kang, G. Ahn, S.-H. Cha and Y.-J. Jeon, 2011. Evaluation of α-glucosidase Inhibitory Activity of Jeju Seaweeds Using High Throughput Screening (HTS) Technique, 5. 33-39. https://doi.org/10.15433/KSMB.2011.5.4.033
- Do, M.H., J. Hur, J. Choi, M. Kim, M.J. Kim, Y. Kim and S.K. Ha, 2018. Eucommia ulmoides ameliorates glucotoxicity by suppressing advanced glycation end-products in diabetic mice kidney. Nutrients, 10. 265. https://doi.org/10.3390/nu10030265
- Lee, J.-y., J.-G. Oh, J.S. Kim and K.-W. Lee, 2014. Effects of chebulic acid on advanced glycation end-products-induced collagen cross-links. Biological and Pharmaceutical Bulletin, b14-00034.
- Liu, Y.-W., X.-L. Liu, L. Kong, M.-Y. Zhang, Y.-J. Chen, X. Zhu and Y.-C. Hao, 2019. Neuroprotection of quercetin on central neurons against chronic high glucose through enhancement of Nrf2/ARE/glyoxalase-1 pathway mediated by phosphorylation regulation. Biomedicine & Pharmacotherapy, 109. 2145-2154. https://doi.org/10.1016/j.biopha.2018.11.066
- Kim, M., C.H. Cho, G.H. Youm, Y. Park and S.-H. Lee, 2020. Glycation inhibitory effect and renal protective ability of Hizikia Fusiformis extracts against advanced glycation end-products (AGEs). Journal of Chitin and Chitosan 25. 175-183.
- Kim, M., C. Cho, C. Lee, B. Ryu, S. Kim, J. Hur and S.-H. Lee, 2021. Ishige okamurae Ameliorates Methylglyoxal-Induced Nephrotoxicity via Reducing Oxidative Stress, RAGE Protein Expression, and Modulating MAPK, Nrf2/ARE Signaling Pathway in Mouse Glomerular Mesangial Cells. Foods, 10. 2000. https://doi.org/10.3390/foods10092000
- Cho, C.H., M. Kim, G.H. Youm, S. Kim, Y. Park and S.-h. Lee, 2020. Advanced glycation end-products inhibitory activities and renoprotective effects of Ishige foliacea ethanolic extract. Journal of Chitin and Chitosan, 25. 134-142. https://doi.org/10.17642/jcc.25.3.4
- Cove-Smith, A. and B.M. Hendry, 2008. The regulation of mesangial cell proliferation. Nephron Experimental Nephrology, 108. e74-e79. https://doi.org/10.1159/000127359
- Olivetti, G., P. Anversa, W. Rigamonti, L. Vitali-Mazza and A.V. Loud, 1977. Morphometry of the renal corpuscle during normal postnatal growth and compensatory hypertrophy. A light microscope study. Journal of Cell Biology, 75. 573-585. https://doi.org/10.1083/jcb.75.2.573
- Stockand, J.D. and S.C. Sansom, 1998. Glomerular mesangial cells: electrophysiology and regulation of contraction. Physiological reviews, 78. 723-744. https://doi.org/10.1152/physrev.1998.78.3.723
- Redza-Dutordoir, M. and D.A. Averill-Bates,2016. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863. 2977-2992. https://doi.org/10.1016/j.bbamcr.2016.09.012
- van Engeland, M., F.C. Ramaekers, B. Schutte and C.P. Reutelingsperger, 1996. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry: The Journal of the International Society for Analytical Cytology, 24. 131-139. https://doi.org/10.1002/(SICI)1097-0320(19960601)24:2<131::AID-CYTO5>3.0.CO;2-M
- Riccardi, C. and I. Nicoletti, 2006. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nature protocols, 1. 1458-1461. https://doi.org/10.1038/nprot.2006.238
- Sena, C.M., P. Matafome, J. Crisostomo, L. Rodrigues, R. Fernandes, P. Pereira and R.M. Seica, 2012. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacological Research, 65. 497-506. https://doi.org/10.1016/j.phrs.2012.03.004
- Yang, M., J. Fan, J. Zhang, J. Du and X. Peng, 2018. Visualization of methylglyoxal in living cells and diabetic mice model with a 1, 8-naphthalimide-based two-photon fluorescent probe. Chemical science, 9. 6758-6764. https://doi.org/10.1039/c8sc02578a
- Liu, B.-F., S. Miyata, Y. Hirota, S. Higo, H. Miyazaki, M. Fukunaga, Y. Hamada, S. Ueyama, O. Muramoto and A. Uriuhara, 2003. Methylglyoxal induces apoptosis through activation of p38 mitogen-activated protein kinase in rat mesangial cells. Kidney international, 63. 947-957. https://doi.org/10.1046/j.1523-1755.2003.00829.x
- Doonan, F. and T.G. Cotter, 2008. Morphological assessment of apoptosis. Methods, 44. 200-204. https://doi.org/10.1016/j.ymeth.2007.11.006