• Title/Summary/Keyword: Anti-Angiogenesis

검색결과 285건 처리시간 0.027초

Hizikia fusiformis 추출물의 in vitro 및 in vivo에서 혈관신생 감소 연구 (Hizikia Fusiformis Hexane Extract Decreases Angiogenesis in Vitro and in Vivo)

  • 제갈명은;한유선;박시영;이지혁;이의연;김영진
    • 생명과학회지
    • /
    • 제33권9호
    • /
    • pp.703-712
    • /
    • 2023
  • 기존 혈관에서 새로운 혈관을 형성하는 혈관 신생은 혈관 신생 조절인자에 의해 조절되는 다단계 과정이며 배아 발달, 만성 염증 및 상처 복구를 포함한 다양한 생리학적 과정에 필수적이다. 혈관 신생의 조절장애는 암, 자가 면역 질환, 류마티스 관절염, 심혈관 질환 및 상처 치유 지연과 같은 많은 질병을 유발한다. 그러나 효과적인 혈관신생 억제 약물은 제한되어 있으며, 최근 연구에서는 천연 자원에서 잠재적인 약물후보를 식별하는 데 중점을 두고 있다. 예를 들어, 해양 천연물은 항암, 항산화, 항염증, 항바이러스 및 상처 치유 효과를 입증했다. 따라서 본 연구에서는 톳(갈조류) 추출물의 혈관 신생 억제 효과를 확인했습니다. H. fusiformis 추출물은 인간 제대 정맥 내피 세포(HUVECs)에서 세포 이동, 침윤 및 관 형성을 억제하며, 동시에 Matrigel 겔 플러그 분석을 통해 생체 내 혈관 신생을 억제를 확인했다. 또한, 톳 추출물 처리 후 VEGF, Erk, Akt의 활성이 감소하는 것을 확인했다. 이 결과를 토대로 H. fusiformis 추출물이 in vitro 및 in vivo 혈관 신생을 억제함을 시사한다.

Dieckol Suppresses CoCl2-induced Angiogenesis in Endothelial Cells

  • Jung, Seung Hyun;Jang, In Seung;Jeon, You-Jin;Kim, Young-Mog;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • 제17권3호
    • /
    • pp.305-311
    • /
    • 2014
  • Dieckol is a polyphenol compound isolated from brown algae that has anti-oxidant, anti-inflammatory, and anti-tumor activity. We examined the anti-angiogenic effects of dieckol in endothelial cells under hypoxic conditions. Treatment with $CoCl_2$, a hypoxic mimetic agent, increased proliferation, adhesion, migration, and tube formation in HUVECs, as well as vessel sprouting in rat aortic rings, which correlated well with increased expression of hypoxia-inducible factor 1-alpha ($HIF1{\alpha}$) and ${\beta}1$-integrin. Dieckol suppressed $CoCl_2$-induced adhesion, migration, and tube formation in HUVECs and vessel sprouting in rat aortic rings. Dieckol treatment decreased $CoCl_2$-induced overexpression of $HIF1{\alpha}$ and its downstream signaling molecules, including ${\beta}1$-integrin/Fak, Akt/eNOS, and p38 MAPK. These results suggest that dieckol is a novel angiogenesis inhibitor and a potential treatment for angiogenesis-dependent diseases in humans, such as malignant tumors.

Norcantharidin Anti-Angiogenesis Activity Possibly through an Endothelial Cell Pathway in Human Colorectal Cancer

  • Yu, Tao;Hou, Fenggang;Liu, Manman;Zhou, Lihong;Li, Dan;Liu, Jianrong;Fan, Zhongze;Li, Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권2호
    • /
    • pp.499-503
    • /
    • 2012
  • The present study was based on the unexpected discovery that norcantharidin exerted anti-angiogenesis activity when effects on growth of human colon cancer were studied. The aim was to further verify this finding and explore possible mechanisms using a tumor xenograft model in nude mice. We confirmed that norcantharidin (5 or 15 mg/kg) could inhibit angiogenesis of human colon cancer in vivo. In vitro, crossing river assay, cell adhesion assay and tube formation assay indicated that NCTD could reduce the migration, adhesion and vascular network tube formation ability of HUVECs. At the same time, the expression levels of VEGF and VEGFR-2 proteins which play important roles in angiogenesis were reduced as examined by western blotting analysis. Taken together, the results firstly showed NCTD could inhibit angiogenesis of human colon cancer in vivo, probably associated with effects on migration, adhesion and vascular network tube formation of HUVECs and expression levels of VEGF and VEGFR-2 proteins.

Design, Syntheses, and Conformational Study of Angiogenesis Inhibitors

  • 박경수;백동하;임동열;박상돈;김민영;박영선;김양미
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권9호
    • /
    • pp.984-988
    • /
    • 2001
  • Since anti-angiogenesis could lead to the suppression of tumor growth, angiogenesis inhibitors have received particular attention for their therapeutic potential. In this study, two angiogenic inhibitors using the bioactive sequence from the kring le 5, AK1(KLYDY), AK2(KLWDF) were designed and synthesized. We have investigated their solution structures using NMR spectroscopy and their activities as angiogenesis inhibitors. AK2 has an intramolecular hydrogen bon d between the side chain amino proton of Lys1 and the carboxyl oxygen of Asp4 with a N ${\cdot}{\cdot}{\cdot}$O distance of $3.27\AA$, while AK1 shows more flexible structures than AK2. Indole ring in Trp is much bigger than the phenyl ring in Tyr and may have good face-to-edge interaction enforcing more rigid and constrained conformational features of AK2. Because of this relatively stable structure, Trp3 in AK2 may have better hydrophobic interaction with Phe5 than Tyr3 in AK1 if two adjacent aromatic groups are located in hydrophobic pocket of receptor. Since AK2 shows the similar anti-angiogenic activities to AK1, we are also able to confirm that the activity of AK1 is irrelevant to the Tyr phosphorylation. More rigid drug with higher activities can be provided by the mimetic approaches. For the further development of the angiogenesis inhibitors, these conformational studies on our lead peptides will be helpful in design of peptidomimetics.

동백잎 추출물의 신생혈관 및 세포부착 억제작용과 그 기전 (Anti-angiogenic and Anti-cell Adhesion Effects and Their Mechanism with the Extract of Camellia japonica Leaf)

  • 송민규;서효진;문제학;박근형;김종덕
    • KSBB Journal
    • /
    • 제22권4호
    • /
    • pp.249-254
    • /
    • 2007
  • 동백잎의 열수 추출물이 신생혈관 생성억제 효과가 강하게 나타남으로써 이들 추출물에 대한 독성 시험을 HUVECs를 사용하여 검토한 바는 200 ug/mL에서도 독성이 없는 것으로 나타났으며, 1.5, 3.0, 15 및 30 ug/mL으로 농도가 증가함에 따라 각각 30.7%, 38.5%, 53.8% 그리고 70.0%의 신생혈관 생성억제율을 보였다. 세포부착 저해효과는 C. japonica leaf (CJL)의 농도가 50, 100, $200{\mu}g{/well}$으로 증가할 때 E-selectin이 46.7%, 66.7% 그리고 86.76%, VCAM-1이 23.0%, 61.5% 그리고 84.6%, ICAM-1이 11.0%, 55.5% 그리고 88.8%로 나타났다. C. japonica leaf (CJL)의 성분 증가에 따라 발현이 감소되는 것을 보아 농도가 증가함에 따라 cell adhesion의 저해 효과가 높아짐을 알 수 있었다. 신호전달의 기전규명은 western blot으로 행하였으며 CJL의 농도가 증가함에 따라 밴드의 발현이 약해지는 것을 관찰할 수 있다. 따라서 신호전달 분자인 VEGFR-2, $\beta$-catenin, Pl3-K는 CJL에 의해 신호전달이 차단되는 것을 볼 수 있고, 이는 NF-${\kappa}$B를 억제함으로서 신생혈관 생성을 저해하는 것으로 확인되었다. 따라서 동백잎은 신생혈관 생성에 의존하고 있는 것으로 알려진 암 등의 치료와 암전이의 억제, 류마치스성 관절염, 그리고 항비만제제로서 개발될 수 있음을 시사한다.

VEGF-VEGFR Signals in Health and Disease

  • Shibuya, Masabumi
    • Biomolecules & Therapeutics
    • /
    • 제22권1호
    • /
    • pp.1-9
    • /
    • 2014
  • Vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR) system has been shown to play central roles not only in physiological angiogenesis, but also in pathological angiogenesis in diseases such as cancer. Based on these findings, a variety of anti-angiogenic drugs, including anti-VEGF antibodies and VEGFR/multi-receptor kinase inhibitors have been developed and approved for the clinical use. While the clinical efficacy of these drugs has been clearly demonstrated in cancer patients, they have not been shown to be effective in curing cancer, suggesting that further improvement in their design is necessary. Abnormal expression of an endogenous VEGF-inhibitor sFlt-1 has been shown to be involved in a variety of diseases, such as preeclampsia and aged macular degeneration. In addition, various factors modulating angiogenic processes have been recently isolated. Given this complexity then, extensive studies on the interrelationship between VEGF signals and other angiogenesis-regulatory systems will be important for developing future strategies to suppress diseases with an angiogenic component.

Development of Angiogenesis Inhibitors: an Analysis of the Patent Literatures

  • Sohn, Eun-Soo;Sohn, Eun-Hwa
    • 대한의생명과학회지
    • /
    • 제17권2호
    • /
    • pp.95-104
    • /
    • 2011
  • The development of a general appreciation for the central role of angiogenesis in cancer growth and metastasis and other disease status has led to a wide range of new therapeutic strategies. This paper reviews the domestic and international trends through technology, marketing and patent information analysis dealing with anti-angiogenic agents. This analytical research has led to the identification of new targets associated with angiogenesis, leading to the development of an extensive number of preclinical screening of antiangiogenetic agents.

A Novel Anti-cancer Agent, SJ-8029, Inhibits Angiogenesis and Induces Apoptosis

  • Yi Eui-Yeun;Jeong Eun-Joo;Song Hyun-Seok;Kang Dong-Wook;Joo Jeong-Ho;Kwon Ho-Seok;Lee Sun-Hwan;Park Si-Kyung;Chung Sun-Gan;Cho Eui-Hwan;Kim Yung-Jin
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.161-170
    • /
    • 2006
  • A new piperazine derivative, 8J-8029, is a synthetic anti-cancer agent which exhibits both microtubule and topoisomerase II inhibiting activities. In this study, we investigated the ability of 8J-8029 for anti-angiogenesis and apoptosis. 8J-8029 decreased the bFGF-induced angiogenesis in the CAM and the mouse Matrigel implants, in vivo. 8J-8029 inhibited the proliferation, migration, invasion, tube fonnation, and expression of MMP-2 in BAECs. In addition, 8J-8029 reduced the cell viability in HepG2 cells, caused the production of fragmented DNA and the morphological changes corresponding to apoptosis. 8J-8029 also elicited the release of cytochrome c and the activation of caspase-3. Taken together, these results suggest 8J-8029 may be a candidate for anti-cancer agent with the ability to inhibit the angiogenesis of endothelial cells and to induce the apoptosis of tumor cells.

  • PDF

Anti-Angiogenic Activity of Acalycixenolide E, a Novel Marine Natural Product from Acallycigorgia inermis

  • Kwon, Ho-Jeong;Kim, Jin-Hee;Jung, Hye-Jin;Kwon, Yong-Guen;Kim, Min-Young;Rho, Jung-Rae;Shin, Jong-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.656-662
    • /
    • 2001
  • Angiogenesis is known as a crucial process in the growth and spreading of tumor cells. Accordingly, the effective inhibition of this process would appear to be a promising way to cure angiogenesis-related diseases, including cancer. This study demonstrates that acalycixenolide E (AX-E) from the marine organism Acalycigorgia inermis exhibits a potent anti-angiogenic activity both in vitro and in vivo. AX-E inhibits the bFGF-induced proliferation of HUVECs in a dose dependent manner, along with the bFGF-induced migration, invasion, and tube formation of HUVECs. Moreover, AX-E potently inhibits the in vivo neovascularization of the chorioallantoic membranes (CAMs) of growing chick embryos. interestingly, AX-E suppresses the expression of metalloproteases 2 and 9, yet shows no effect on their activities. The novel chemical structure and potent anti-angiogenic activity of AX-E will be of great value in elucidating the molecular mechanism of angiogenesis as well as in the development of a novel anti-angiogenic drug.

  • PDF

MMPP is a novel VEGFR2 inhibitor that suppresses angiogenesis via VEGFR2/AKT/ERK/NF-κB pathway

  • Na-Yeon Kim;Hyo-Min Park;Jae-Young Park;Uijin Kim;Ha Youn Shin;Hee Pom Lee;Jin Tae Hong;Do-Young Yoon
    • BMB Reports
    • /
    • 제57권5호
    • /
    • pp.244-249
    • /
    • 2024
  • Many types of cancer are associated with excessive angiogenesis. Anti-angiogenic treatment is an effective strategy for treating solid cancers. This study aimed to demonstrate the inhibitory effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) in VEGFA-induced angiogenesis. The results indicated that MMPP effectively suppressed various angiogenic processes, such as cell migration, invasion, tube formation, and sprouting of new vessels in human umbilical vein endothelial cells (HUVECs) and mouse aortic ring. The inhibitory mechanism of MMPP on angiogenesis involves targeting VEGFR2. MMPP showed high binding affinity for the VEGFR2 ATP-binding domain. Additionally, MMPP improved VEGFR2 thermal stability and inhibited VEGFR2 kinase activity, suppressing the downstream VEGFR2/AKT/ERK pathway. MMPP attenuated the activation and nuclear translocation of NF-κB, and it downregulated NF-κB target genes such as VEGFA, VEGFR2, MMP2, and MMP9. Furthermore, conditioned medium from MMPP-treated breast cancer cells effectively inhibited angiogenesis in endothelial cells. These results suggested that MMPP had great promise as a novel VEGFR2 inhibitor with potent anti-angiogenic properties for cancer treatment via VEGFR2/AKT/ERK/NF-κB signaling pathway.