References
- Alitalo, K. and Carmeliet, P. (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1, 219-227. https://doi.org/10.1016/S1535-6108(02)00051-X
- Ambati, B. K., Nozaki, M., Singh, N., Takeda, A., Jani, P. D., Suthar, T., Albuquerque, R. J., Richter, E., Sakurai, E., Newcomb, M. T., Kleinman, M. E., Caldwell, R. B., Lin, Q., Ogura, Y., Orecchia, A., Samuelson, D. A., Agnew, D. W., St Leger, J., Green, W. R., Mahasreshti, P. J., Curiel, D. T., Kwan, D., Marsh, H., Ikeda S, Leiper, L. J., Collinson, J. M., Bogdanovich, S., Khurana, T. S., Shibuya, M., Baldwin, M. E., Ferrara, N., Gerber, H. P., De Falco, S., Witta, J., Baffi, J. Z., Raisler, B. J. and Ambati, J. (2006) Corneal avascularity is due to soluble VEGF receptor-1. Nature 443, 993-997. https://doi.org/10.1038/nature05249
- Barleon, B., Sozzani, S., Zhou, D., Weich, H. A., Martovani, A. and Marme, D. (1996) Migration of human monocytes in response to vascular endothelilal growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336-3343.
- Beck, H., Raab, S., Copanaki, E., Heil, M., Scholz, A., Shibuya, M., Deller, T., Machein, M. and Plate, K. H. (2010) VEGFR-1 signaling regulates the homing of bone marrow derived cells in a mouse stroke model. J. Neuropathol. Exp. Neurol. 69,168-175. https://doi.org/10.1097/NEN.0b013e3181c9c05b
- Bellomo, D., Headrick, J. P., Silins, G. U., Paterson, C. A., Thomas, P. S., Gartside, M., Mould, A., Cahill, M. M., Tonks, I. D., Grimmond, S. M., Townson, S., Wells, C., Little, M., Cummings, M. C., Hayward, N. K. and Kay, G. F. (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 86, E29-35. https://doi.org/10.1161/01.RES.86.2.e29
- Bry, M., Kivela, R., Holopainen, T., Anisimov, A., Tammela, T., Soronen, J., Silvola, J., Saraste, A., Jeltsch, M., Korpisalo, P., Carmeliet, P., Lemstrom, K. B., Shibuya, M., Yla-Herttuala, S., Alhonen, L., Mervaala, E., Andersson, L. C., Knuuti, J. and Alitalo, K. (2010) Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation 122,1725-1733. https://doi.org/10.1161/CIRCULATIONAHA.110.957332
- Carmellet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kleckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawlling, J., Moons, L., Collen, D., Risau, W. and Nagy, A. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435-439. https://doi.org/10.1038/380435a0
- Clauss, M., Weich, H., Breier, G., Knies, U., Rockl, W., Waltenberger, J. and Risau, W. (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities. J. Biol. Chem. 271, 17629-17634. https://doi.org/10.1074/jbc.271.30.17629
- Cohen, M. H., Gootenberg, J., Keegan, P. and Pazdur, R. (2007) FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 12, 713-718. https://doi.org/10.1634/theoncologist.12-6-713
- De Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N. and Williams, L. T. (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989-991 https://doi.org/10.1126/science.1312256
- Dhondt, J., Peeraer, E., Verheyen, A., Nuydens, R., Buysschaert, I., Poesen, K., Van Geyte, K., Beerens, M., Shibuya, M., Haigh, J. J., Meert, T., Carmeliet, P. and Lambrechts, D. (2011) Neuronal FLT1 receptor and its selective ligand VEGF-B protect against retrograde degeneration of sensory neurons. FASEB J. 25, 1461-1473. https://doi.org/10.1096/fj.10-170944
- Dias, S., Shmelkov, S. V., Lam, G. and Rafii S. (2002) VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 99, 2532-2540. https://doi.org/10.1182/blood.V99.7.2532
- Dumont, D. J., Jussila, L., Taipale, J., Lymboussaki, A., Mustonen, T., Pajusola, K., Breitman, M. and Alitalo, K. (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946-949. https://doi.org/10.1126/science.282.5390.946
- Dvorak, H. F. (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 20, 4368-4380. https://doi.org/10.1200/JCO.2002.10.088
- Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'Shea, K. S., Powell-Braxton, L., Hillan, K. J. and Moore, M. W. (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439-442. https://doi.org/10.1038/380439a0
- Ferrara, N. (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581-611. https://doi.org/10.1210/er.2003-0027
- Foidart, J. M., Schaaps, J. P., Chantraine, F., Munaut, C. and Lorquet, S. (2009) Dysregulation of anti-angiogenic agents (sFlt-1, PLGF, and sEndoglin) in preeclampsia-a step forward but not the definitive answer. J. Reprod. Immunol. 82, 106-111. https://doi.org/10.1016/j.jri.2009.09.001
- Fong, G. H., Rossant, J., Gertsentein, M. and Breitman, M. L. (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70. https://doi.org/10.1038/376066a0
- Freitas, C., Larrivee, B. and Eichmann, A. (2008) Netrins and UNC5 receptors in angiogenesis. Angiogenesis 11, 23-29. https://doi.org/10.1007/s10456-008-9096-2
- Gilbert, J. S., Babcock, S. A. and Granger, J. P. (2007) Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble Fms-like tyrosine kinase-1 expression. Hypertension 50, 1142-1147. https://doi.org/10.1161/HYPERTENSIONAHA.107.096594
- Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364. https://doi.org/10.1016/S0092-8674(00)80108-7
- Heldin, C. H. and Westermark, B. (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79, 1283-1316. https://doi.org/10.1152/physrev.1999.79.4.1283
- Hida, K., Ohga, N., Akiyama, K., Maishi, N. and Hida, Y. (2013) Heterogeneity of tumor endothelial cells. Cancer Sci. Aug 12. doi: 10.1111/cas.12251. [Epub ahead of print]
- Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. and Shibuya, M. (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci. U.S.A. 95, 9349-9354. https://doi.org/10.1073/pnas.95.16.9349
- Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., Shipley, J. M., Senior, R. M. and Shibuya, M. (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung specific metastasis. Cancer Cell 2, 289-300. https://doi.org/10.1016/S1535-6108(02)00153-8
- Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R. and Kabbinavar, F. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335-2342. https://doi.org/10.1056/NEJMoa032691
- Huveldt, D., Lewis-Tuffin, L. J., Carlson, B. L., Schroeder, M. A., Rodriguez, F., Giannini, C., Galanis, E., Sarkaria, J. N. and Anastasiadis, P. Z. (2013) Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion. PLoS One. 8, e56505. https://doi.org/10.1371/journal.pone.0056505
- Jin, J., Sison, K., Li, C., Tian, R., Wnuk, M., Sung, H. K., Jeansson, M., Zhang, C., Tucholska, M., Jones, N., Kerjaschki, D., Shibuya, M., Fantus, I. G., Nagy, A., Gerber, H. P., Ferrara, N., Pawson, T., and Quaggin, S. E. (2012) Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 151, 384-399. https://doi.org/10.1016/j.cell.2012.08.037
- Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., MacDonald, D. D., Jin, D. K., Shido, K., Kerns, S. A., Zhu, Z., Hicklin, D., Wu, Y., Port, J. L., Altorki, N., Port, E. R., Ruggero, D., Shmelkov, S. V., Jensen, K. K., Rafii, S. and Lyden, D. (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820-827. https://doi.org/10.1038/nature04186
- Kato, T., Ito, Y., Hosono, K., Suzsuki, T., Tamaki, H., Minamino, T., Kato, S., Sakagami, H., Shibuya, M. and Majima, M. (2011) Vascular endothelial growth factor receptor-1 signaling promotes liver repair through restoration of liver microvasculature after acetaminophen hepatotoxicity. Toxicol. Sci. 120, 218-229. https://doi.org/10.1093/toxsci/kfq366
- Kendall, R. L. and Thomas, K. A. (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl. Acad. Sci. U.S.A. 90, 10705-10709. https://doi.org/10.1073/pnas.90.22.10705
- Kerber, M., Reiss, Y., Wickersheim, A., Jugold, M., Kiessling, F., Heil, M., Tchaikovski, V., Waltenberger, J., Shibuya, M., Plate, K.H. and Machein, M.R. (2008) Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Res. 68, 7342-7351. https://doi.org/10.1158/0008-5472.CAN-07-6241
- Keyt, B. A., Nguyen, H. V., Berleau, L. T., Duarte, C. M., Park, J., Chen, H. and Ferrara, N. (1996) Identification of vascular endothelial growth factor determinanats for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis. J. Biol. Chem. 271, 5638-5646. https://doi.org/10.1074/jbc.271.10.5638
- Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S. and Ferrara, N. (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841-844. https://doi.org/10.1038/362841a0
- Kim, M., Park, H. J., Seol, J. W., Jang, J. Y., Cho, Y. S., Kim, K. R., Choi, Y., Lydon, J. P., Demayo, F. J., Shibuya, M., Ferrara, N., Sung, H. K., Nagy, A., Alitalo, K. and Koh, G. Y. (2013) VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodeling during pregnancy. EMBO Mol. Med. 5, 1415-1430. https://doi.org/10.1002/emmm.201302618
- Koga, K., Osuga, Y., Yoshino, O., Hirota, Y., Ruimeng, X., Hirata, T., Takeda, S., Yano, T., Tsutsumi, O. and Taketani, Y. (2003) Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J. Clin. Endocrinol. Metab. 88, 2348-2351. https://doi.org/10.1210/jc.2002-021942
- Kumasawa, K., Ikawa, M., Kidoya, H., Hasuwa, H., Saito-Fujita, T., Morioka, Y., Takakura, N., Kimura, T. and Okabe, M. (2011) Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc. Natl. Acad. Sci. U.S.A. 108, 1451-1455. https://doi.org/10.1073/pnas.1011293108
- Laurent, J., Hull, E. F., Touvrey, C., Kuonen, F., Lan, Q., Lorusso, G., Doucey, M. A., Ciarloni, L., Imaizumi, N., Alghisi, G.C., Fagiani, E., Zaman, K., Stupp, R., Shibuya, M., Delaloye, J. F., Christofori, G. and Ruegg, C. (2011) Proangiogenic factor PlGF programs CD11b(+) myelomonocytes in breast cancer during differentiation of their hematopoietic progenitors. Cancer Res. 71, 3781-3791. https://doi.org/10.1158/0008-5472.CAN-10-3684
- Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. and Ferrara, N. (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306-1309. https://doi.org/10.1126/science.2479986
- Levine, R. J., Maynard, S. E., Qian, C., Lim, K. H., England, L. J., Yu, K. F., Schisterman, E. F., Thadhani, R., Sachs, B. P., Epstein, F. H., Sibai, B. M., Sukhatme, V. P. and Karumanchi, S. A. (2004) Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 350, 672-683. https://doi.org/10.1056/NEJMoa031884
- Luo, L., Uehara, H., Zhang, X., Das, S. K., Olsen, T., Holt, D., Simonis, J. M., Jackman, K., Singh, N., Miya, T. R., Huang, W., Ahmed, F., Bastos-Carvalho, A., Le, Y. Z., Mamalis, C., Chiodo, V. A., Hauswirth, W. W., Baffi, J., Lacal, P. M., Orecchia, A., Ferrara, N., Gao, G., Young-Hee, K., Fu, Y., Owen, L., Albuquerque, R., Baehr, W., Thomas, K., Li, D. Y., Chalam, K. V., Shibuya, M., Grisanti, S., Wilson, D. J., Ambati, J. and Ambati, B. K. (2013) Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. Elife 2:e00324.
- Matsumoto, T., Bohman, S., Dixelius, J., Berge, T., Dimberg, A., Magnusson, P., Wang, L., Wikner, C., Qi, J. H., Wernstedt, C., Wu, J., Bruheim, S., Mugishima, H., Mukhopadhyay, D., Spurkland, A. and Claesson-Welsh, L. (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J. 24, 2342-2353. https://doi.org/10.1038/sj.emboj.7600709
- Maynard, S. E., Min, J. Y., Merchan, J., Lim, K. H., Li, J., Mondal, S., Libermann, T. A., Morgan, J. P., Sellke, F. W., Stillman, I. E., Epstein, F. H., Sukhatme, V. P. and Karumanchi, S. A. (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649-658. https://doi.org/10.1172/JCI17189
- Mezquita, J., Mezquita, B., Pau, M. and Mezquita, C. (2003) Down-regulation of Flt-1 gene expression by the proteasome inhibitor MG262. J. Cell. Biochem. 89, 1138-1147. https://doi.org/10.1002/jcb.10587
- Minami, T., Horiuchi, K., Miura, M., Abid, M. R., Takabe, W., Noguchi, N., Kohro, T., Ge, X., Aburatani, H., Hamakubo, T., Kodama, T. and Aird, W. C. (2004) Vascular endothelial growth factor- and thrombin-induced termination factor, Down syndrome critical region-1, attenuates endothelial cell proliferation and angiogenesis. J. Biol. Chem. 279, 50537-50554. https://doi.org/10.1074/jbc.M406454200
- Murakami, M., Iwai, S., Hiratsuka, S., Yamauchi, M., Nakamura, K., Iwakura, Y. and Shibuya, M. (2006) Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocyte/macrophages. Blood 108, 1849-1856. https://doi.org/10.1182/blood-2006-04-016030
- Muramatsu, M., Yamamoto, S., Osawa, T. and Shibuya, M. (2010) Vascular endothelial growth factor receptor-1 signaling promotes mobilization of macrophage lineage cells from bone marrow and stimulates solid tumor growth. Cancer Res. 70, 8211-8221. https://doi.org/10.1158/0008-5472.CAN-10-0202
- Nagamatsu, T., Fujii, T., Kusumi, M., Zou, L., Yamashita, T., Osuga, Y., Momoeda, M., Kozuma, S. and Taketani, Y. (2004) Cytotrophoblasts up-regulate soluble fms-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology 145, 4838-4845. https://doi.org/10.1210/en.2004-0533
- Niida, S., Kondo, T., Hiratsuka, S., Hayashi, S. I., Amizuka, N., Noda, T., Ikeda, K. and Shibuya, M. (2005) VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 102, 14016-14021. https://doi.org/10.1073/pnas.0503544102
- Noguera-Troise, I., Daly, C., Papadopoulos, N. J., Coetzee, S., Boland, P., Gale, N. W., Lin, H. C., Yancopoulos, G. D. and Thurston, G. (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 444, 1032-1037. https://doi.org/10.1038/nature05355
- Oosthuyse, B., Moons, L., Storkebaum, E., Beck, H., Nuyens, D., Brusselmans, K., Van Dorpe, J., Hellings, P., Gorselink, M., Heymans, S., Theilmeier, G., Dewerchin, M., Laudenbach, V., Vermylen, P., Raat, H., Acker, T., Vleminckx, V., Van Den Bosch, L., Cashman, N., Fujisawa, H., Drost, M. R., Sciot, R., Bruyninckx, F., Hicklin, D. J., Ince, C., Gressens, P., Lupu, F., Plate, K. H., Robberecht, W., Herbert, J. M., Collen, D. and Carmeliet, P. (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131-138. https://doi.org/10.1038/88842
- Osawa, T., Tsuchida, R., Muramatsu, M., Shimamura, T., Wang, F., Suehiro, J. I., Kanki, Y., Wada, Y., Yuasa, Y., Aburatani, H., Miyano, S., Minami, T., Kodama, T. and Shibuya, M. (2013) Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor associated macrophages. Cancer Res. 73, 3019-3028. https://doi.org/10.1158/0008-5472.CAN-12-3231
- Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., Inoue, M., Bergers, G., Hanahan, D. and Casanovas, O. (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 15, 220-231. https://doi.org/10.1016/j.ccr.2009.01.027
- Pritchard-Jones, R. O., Dunn, D. B., Qiu, Y., Varey, A. H., Orlando, A., Rigby, H., Harper, S. J. and Bates, D. O. (2007) Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma. Br. J. Cancer 97, 223-230. https://doi.org/10.1038/sj.bjc.6603839
- Risau, W. (1997) Mechanisms of angiogenesis. Nature 386, 671-674. https://doi.org/10.1038/386671a0
- Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N. and Shibuya, M. (2005) Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl. Acad. Sci. U.S.A. 102, 1076-1081. https://doi.org/10.1073/pnas.0404984102
- Sallinen, H., Anttila, M., Grohn, O., Koponen, J., Hamalainen, K., Kholova, I., Kosma, V.M., Heinonen, S., Alitalo, K. and Yla-Herttuala S. (2011) Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid human ovarian cancer in mice. Cancer Gene Ther. 18, 100-109. https://doi.org/10.1038/cgt.2010.56
- Sase, H., Watabe, T., Kawasaki, K., Miyazono, K. and Miyazawa, K. (2009) VEGFR2-PLCgamma1 axis is essential for endothelial specification of VEGFR2+ vascular progenitor cells. J. Cell Sci. 122, 3303-3311. https://doi.org/10.1242/jcs.049908
- Sato, T., Amano, H., Ito, Y., Eshima, K., Minamino, T., Ae, T., Katada, C., Ohno, T., Hosono, K., Suzuki, T., Shibuya, M., Koizumi, W. and Majima M. (2013) NSAID, aspirin delays gastric ulcer healing with reduced accumulation of CXCR4+VEGFR1+ cells to the ulcer granulation tissues. Biomed Pharmacother. 67, 607-613. https://doi.org/10.1016/j.biopha.2013.01.009
- Sato, Y. (2013) The vasohibin family: a novel family for angiogenesis regulation. J. Biochem. 153, 5-11. https://doi.org/10.1093/jb/mvs128
- Sawano, A., Takahashi, T., Yamaguchi, S., Aonuma, T. and Shibuya, M. (1996) Flt-1 but not KDR/Flk-1 tyrosine kinase is a receptor for placenta growth factor (PlGF), which is related to vascular endothelial growth factor (VEGF). Cell Growth Diff. 7, 213-221.
- Schwartz, J. D., Rowinsky, E. K., Youssoufian, H., Pytowski, B. and Wu, Y. (2010) Vascular endothelial growth factor receptor-1 in human cancer: concise review and rationale for development of IMC-18F1 (Human antibody targeting vascular endothelial growth factor receptor-1). Cancer 116,1027-1032. https://doi.org/10.1002/cncr.24789
- Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L. and Schuh, A. C. (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62-66. https://doi.org/10.1038/376062a0
- Shibuya, M., Yamaguchi, S., Yamane, A., Ikeda, T., Tojo, A., Matsushime, H. and Sato, M. (1990) Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5, 519-524.
- Shibuya, M. and Claesson-Welsh, L. (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell. Res. 312, 549-560. https://doi.org/10.1016/j.yexcr.2005.11.012
- Shibuya, M. (2006) Vascular endothelial growth factor receptor-1 (VEGFR1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9, 225-230 https://doi.org/10.1007/s10456-006-9055-8
- Shibuya, M. (2011) Involvement of Flt-1 (VEGFR-1) in cancer and preeclampsia. Proc. Jpn. Acad Ser. B. Phys. Biol. Sci. 87, 167-178. https://doi.org/10.2183/pjab.87.167
- Suri, C., Jones, P. F., Patan, S., Bartunkova, S., Maisonpierre, P. C., Davis, S., Sato, T. N. and Yancopoulos, G. D. (1996) Requisite role of Angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171-1180. https://doi.org/10.1016/S0092-8674(00)81813-9
- Takahashi, T., Ueno, H. and Shibuya, M. (1999) VEGF activates Protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18, 2221-2230. https://doi.org/10.1038/sj.onc.1202527
-
Takahashi, T., Yamaguchi, S., Chida, K. and Shibuya, M. (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-
${\gamma}$ and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768-2778. https://doi.org/10.1093/emboj/20.11.2768 - Tammela, T., Zarkada, G., Wallgard, E., Murtomaki, A., Suchting, S., Wirzenius, M., Waltari, M., Hellstrom, M., Schomber, T., Peltonen, R., Freitas, C., Duarte, A., Isoniemi, H., Laakkonen, P., Christofori, G., Yla-Herttuala, S., Shibuya, M., Pytowski, B., Eichmann, A., Betsholtz, C. and Alitalo, K. (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656-660. https://doi.org/10.1038/nature07083
- Tanaka, K., Yamaguchi, S., Sawano, A. and Shibuya, M. (1997) Characterization of the extracellular domain in the vascular endothelial growth factor receptor-1 (Flt-1 tyrosine kinase). Jpn. J. Cancer Res. 88, 867-876. https://doi.org/10.1111/j.1349-7006.1997.tb00463.x
- Thadhani, R., Kisner, T., Hagmann, H., Bossung, V., Noack, S., Schaarschmidt, W., Jank, A., Kribs, A., Cornely, O. A., Kreyssig, C., Hemphill, L., Rigby, A. C., Khedkar, S., Lindner, T. H., Mallmann, P., Stepan, H., Karumanchi, S. A. and Benzing, T. (2011) Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia. Circulation 124, 940-950. https://doi.org/10.1161/CIRCULATIONAHA.111.034793
- Verheyen, A., Peeraer, E., Nuydens, R., Dhondt, J., Poesen, K., Pintelon, I., Daniels, A., Timmermans, J. P., Meert, T., Carmeliet, P. and Lambrechts, D. (2012) Systemic anti-vascular endothelial growth factor therapies induce a painful sensory neuropathy. Brain 135, 2629-2641. https://doi.org/10.1093/brain/aws145
- Wang, H. U., Chen, Z. F. and Anderson, D. J. (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741-753. https://doi.org/10.1016/S0092-8674(00)81436-1
- Watnick, R. S., Cheng, Y. N., Rangarajan, A., Ince, T. A. and Weinberg, R. A. (2003) Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3, 219-231. https://doi.org/10.1016/S1535-6108(03)00030-8
- Wittko, I. M., Schanzer, A., Kuzmichev, A., Schneider, F. T., Shibuya, M., Raab, S. and Plate, K. H. (2009) VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J. Neurosci. 29, 8704-8714,. https://doi.org/10.1523/JNEUROSCI.5527-08.2009
- Xiong, Y., Huo, Y., Chen, C., Zeng, H., Lu, X., Wei, C., Ruan, C., Zhang, X., Hu, Z., Shibuya, M. and Luo, J. (2009) Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signaling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C-gamma 1- and protein kinase A-dependent pathways. J. Biol. Chem. 284, 23217-23224. https://doi.org/10.1074/jbc.M109.019679
- Yamauchi, M., Imajoh-Ohmi, S. and Shibuya, M. (2007) Novel anti-angiogenic pathway of thrombospondin-1 mediated by suppression of the cell cycle. Cancer Sci. 98, 1491-1497. https://doi.org/10.1111/j.1349-7006.2007.00534.x
- Yan, M., Callahan, C. A., Beyer, J. C., Allamneni, K. P., Zhang, G., Ridgway, J. B., Niessen, K. and Plowman, G. D. (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463, E6-7. https://doi.org/10.1038/nature08751
- Young, B. C., Levine, R. J. and Karumanchi, S. A. (2010) Pathogenesis of preeclampsia. Annu. Rev. Pathol. 5, 173-192. https://doi.org/10.1146/annurev-pathol-121808-102149
Cited by
- Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation vol.37, pp.7, 2017, https://doi.org/10.1177/0271678X16669365
- The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line vol.5, pp.6, 2015, https://doi.org/10.1016/j.apsb.2015.07.008
- A novel strategy to enhance angiogenesis in vivo using the small VEGF-binding peptide PR1P vol.20, pp.3, 2017, https://doi.org/10.1007/s10456-017-9556-7
- Effects of mesenchymal stem cells and VEGF on liver regeneration following major resection vol.401, pp.5, 2016, https://doi.org/10.1007/s00423-016-1380-9
- VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis vol.10, pp.4, 2016, https://doi.org/10.1007/s12079-016-0352-8
- A randomized double-blind placebo-controlled crossover trial of sodium nitrate in patients with stable angina INAS vol.12, pp.6, 2016, https://doi.org/10.2217/fca-2016-0026
- Angiogenesis in glaucoma filtration surgery and neovascular glaucoma: A review vol.60, pp.6, 2015, https://doi.org/10.1016/j.survophthal.2015.04.003
- VEGF Polymorphisms Related to Higher Serum Levels of Protein Identify Patients with Hepatocellular Carcinoma vol.2016, 2016, https://doi.org/10.1155/2016/9607054
- MicroRNA-101 induces apoptosis in cisplatin-resistant gastric cancer cells by targeting VEGF-C vol.13, pp.1, 2016, https://doi.org/10.3892/mmr.2015.4560
- Investigation on association between five common polymorphisms in vascular endothelial growth factor and prototypes of autoimmune diseases vol.220, pp.6, 2015, https://doi.org/10.1016/j.imbio.2015.01.001
- Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer vol.19, pp.2, 2017, https://doi.org/10.1208/s12248-016-0015-y
- Ethoxyfagaronine, a synthetic analogue of fagaronine that inhibits vascular endothelial growth factor-1, as a new anti-angiogeneic agent vol.33, pp.1, 2015, https://doi.org/10.1007/s10637-014-0184-4
- Astragalosides promote angiogenesis via vascular endothelial growth factor and basic fibroblast growth factor in a rat model of myocardial infarction vol.12, pp.5, 2015, https://doi.org/10.3892/mmr.2015.4307
- Ranibizumab interacts with the VEGF-A/VEGFR-2 signaling pathway in human RPE cells at different levels vol.83, 2016, https://doi.org/10.1016/j.cyto.2016.04.014
- Anti-Angiogenic Effect of Metformin in Mouse Oxygen-Induced Retinopathy Is Mediated by Reducing Levels of the Vascular Endothelial Growth Factor Receptor Flk-1 vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0119708
- Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism vol.7, 2016, https://doi.org/10.1038/ncomms12680
- Differential function and regulation of orphan nuclear receptor TR3 isoforms in endothelial cells vol.37, pp.3, 2016, https://doi.org/10.1007/s13277-015-4157-9
- Glutamate Neonatal Excitotoxicity Modifies VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 Protein Expression Profiles During Postnatal Development of the Cerebral Cortex and Hippocampus of Male Rats vol.63, pp.1, 2017, https://doi.org/10.1007/s12031-017-0952-7
- Identification of Peptidic Antagonists of Vascular Endothelial Growth Factor Receptor 1 by Scanning the Binding Epitopes of Its Ligands vol.60, pp.15, 2017, https://doi.org/10.1021/acs.jmedchem.7b00283
- Design and Synthesis of C-Terminal Modified Cyclic Peptides as VEGFR1 Antagonists vol.19, pp.10, 2014, https://doi.org/10.3390/molecules191015391
- A Novel Peptide Derived From Tissue-Type Plasminogen Activator Potently Inhibits Angiogenesis and Corneal Neovascularization vol.118, pp.5, 2017, https://doi.org/10.1002/jcb.25732
- Two natural eudesmane-type sesquiterpenes from Laggera alata inhibit angiogenesis and suppress breast cancer cell migration through VEGF- and Angiopoietin 2-mediated signaling pathways vol.51, pp.1, 2017, https://doi.org/10.3892/ijo.2017.4004
- Vascular endothelial growth factor: An important molecular target of curcumin 2017, https://doi.org/10.1080/10408398.2017.1366892
- Transfection of chondromodulin I into human breast cancer cells and its effect on the inhibition of cancer cell growth vol.13, pp.5, 2016, https://doi.org/10.3892/mmr.2016.5079
- KLF4 Promotes Angiogenesis by Activating VEGF Signaling in Human Retinal Microvascular Endothelial Cells vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0130341
- Exploring quercetin and luteolin derivatives as antiangiogenic agents vol.97, 2015, https://doi.org/10.1016/j.ejmech.2015.04.056
- Endocrine vasculatures are preferable targets of an antitumor ineffective low dose of anti-VEGF therapy vol.113, pp.15, 2016, https://doi.org/10.1073/pnas.1601649113
- The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis vol.463, pp.4, 2015, https://doi.org/10.1016/j.bbrc.2015.05.073
- Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation vol.5, 2014, https://doi.org/10.3389/fphar.2014.00209
- The role of pharmacogenetics and advances in gene therapy in the treatment of diabetic retinopathy vol.17, pp.3, 2016, https://doi.org/10.2217/pgs.15.173
- Sulfated Hyaluronan Alters Endothelial Cell Activation in Vitro by Controlling the Biological Activity of the Angiogenic Factors Vascular Endothelial Growth Factor-A and Tissue Inhibitor of Metalloproteinase-3 vol.9, pp.11, 2017, https://doi.org/10.1021/acsami.7b01300
- VEGF released from a fibrin biomatrix increases VEGFR-2 expression and improves early outcome after ischaemia-reperfusion injury vol.11, pp.7, 2017, https://doi.org/10.1002/term.2114
- Modulation of VEGF receptor 2 signaling by protein phosphatases vol.115, 2017, https://doi.org/10.1016/j.phrs.2016.11.022
- Impact ofVEGFgene polymorphisms in elderly cancer patients: clinical outcome and toxicity vol.16, pp.1, 2015, https://doi.org/10.2217/pgs.14.136
- Ectodomain cleavage of FLT1 regulates receptor activation and function and is not required for its downstream intracellular cleavage vol.344, pp.1, 2016, https://doi.org/10.1016/j.yexcr.2016.03.020
- Post-transcriptional control of Amblyomin-X on secretion of vascular endothelial growth factor and expression of adhesion molecules in endothelial cells vol.101, 2015, https://doi.org/10.1016/j.toxicon.2015.04.002
- Maintenance of antiangiogenic and antitumor effects by orally active low-dose capecitabine for long-term cancer therapy 2017, https://doi.org/10.1073/pnas.1705066114
- Down-regulating HIF-1α by lentivirus-mediated shRNA for therapy of triple negative breast cancer vol.16, pp.6, 2015, https://doi.org/10.1080/15384047.2015.1040958
- Long-term results of pl-VEGF165 intramuscular gene transfer in patients with atherosclerotic chronic lower limb ischemia vol.8, pp.4, 2015, https://doi.org/10.17116/kardio20158443-49
- Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases vol.282, pp.19, 2015, https://doi.org/10.1111/febs.13342
- Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A vol.25, pp.2, 2017, https://doi.org/10.1016/j.str.2016.12.012
- Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs vol.108, 2016, https://doi.org/10.1016/j.ejmech.2015.12.016
- Nucleoside Diphosphate Kinase B Regulates Angiogenesis Through Modulation of Vascular Endothelial Growth Factor Receptor Type 2 and Endothelial Adherens Junction Proteins vol.34, pp.10, 2014, https://doi.org/10.1161/ATVBAHA.114.304239
- b Modulates Endothelial VEGFR1–STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease vol.120, pp.2, 2017, https://doi.org/10.1161/CIRCRESAHA.116.309516
- Infantile hemangioma: pathogenesis and mechanisms of action of propranolol vol.15, pp.12, 2017, https://doi.org/10.1111/ddg.13365
- Das infantile Hämangiom: Pathogenese und Wirkmechanismus von Propranolol vol.15, pp.12, 2017, https://doi.org/10.1111/ddg.13365_g
- Antihyperalgesic Properties of Honokiol in Inflammatory Pain Models by Targeting of NF-κB and Nrf2 Signaling vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00140
- Vascular Endothelial Growth Factor, from Basic Research to Clinical Applications vol.19, pp.12, 2018, https://doi.org/10.3390/ijms19123750
- Exosomes derived from acute myeloid leukemia cells promote chemoresistance by enhancing glycolysis-mediated vascular remodeling pp.00219541, 2018, https://doi.org/10.1002/jcp.27735
- Rutacecarpine Inhibits Angiogenesis by Targeting the VEGFR2 and VEGFR2-Mediated Akt/mTOR/p70s6k Signaling Pathway vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23082047
- A Subset of Paracrine Factors as Efficient Biomarkers for Predicting Vascular Regenerative Efficacy of Mesenchymal Stromal/Stem Cells pp.10665099, 2018, https://doi.org/10.1002/stem.2920
- Ablation of endothelial VEGFR1 improves metabolic dysfunction by inducing adipose tissue browning vol.215, pp.2, 2018, https://doi.org/10.1084/jem.20171012
- VEGF-A selectively inhibits FLT1 ectodomain shedding independent of receptor activation and receptor endocytosis vol.315, pp.2, 2018, https://doi.org/10.1152/ajpcell.00247.2017
- Characterizing Glioblastoma Heterogeneity via Single-Cell Receptor Quantification vol.6, pp.2296-4185, 2018, https://doi.org/10.3389/fbioe.2018.00092
- Characterization of a drug-targetable allosteric site regulating vascular endothelial growth factor signaling vol.21, pp.3, 2018, https://doi.org/10.1007/s10456-018-9606-9
- The urokinase plasminogen activator system components are regulated by vascular endothelial growth factor D in bovine oviduct vol.26, pp.3, 2018, https://doi.org/10.1017/S0967199418000151
- The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis vol.35, pp.5, 2014, https://doi.org/10.1042/bsr20150171
- Orally Administered Mucolytic Drug l-Carbocisteine Inhibits Angiogenesis and Tumor Growth in Mice vol.354, pp.3, 2014, https://doi.org/10.1124/jpet.115.224816
- VASCULAR ENDOTHELIAL GROWTH FACTOR IN HEALTH AND DISEASE: A REVIEW vol.3, pp.80, 2014, https://doi.org/10.18410/jebmh/2016/929
- Inhibitory effect of carboplatin in combination with bevacizumab on human retinoblastoma in an in vitro and in vivo model vol.14, pp.5, 2014, https://doi.org/10.3892/ol.2017.6827
- Small Molecule Neuropilin-1 Antagonists Combine Antiangiogenic and Antitumor Activity with Immune Modulation through Reduction of Transforming Growth Factor Beta (TGFβ) Production in Regulatory T vol.61, pp.9, 2014, https://doi.org/10.1021/acs.jmedchem.8b00210
- Targeting Fluorescent Nanodiamonds to Vascular Endothelial Growth Factor Receptors in Tumor vol.30, pp.3, 2014, https://doi.org/10.1021/acs.bioconjchem.8b00803
- Umbilical cord blood-derived Helios-positive regulatory T cells promote angiogenesis in acute lymphoblastic leukemia in mice via CCL22 and the VEGFA-VEGFR2 pathway vol.19, pp.5, 2014, https://doi.org/10.3892/mmr.2019.10074
- Human Recombinant VEGFR2D4 Biochemical Characterization to Investigate Novel Anti-VEGFR2D4 Antibodies for Allosteric Targeting of VEGFR2 vol.61, pp.7, 2014, https://doi.org/10.1007/s12033-019-00181-7
- Anti-angiogenic activity of Gracilaria coronopifolia J.G. Agardh extract by lowering the levels of trace metals (iron, zinc and copper) in duck chorioallantoic membrane and in vitro activation of AMP- vol.46, pp.4, 2019, https://doi.org/10.1007/s11033-019-04864-x
- Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics vol.8, pp.8, 2014, https://doi.org/10.3390/cells8080863
- 6′-Sialylgalactose inhibits vascular endothelial growth factor receptor 2-mediated angiogenesis vol.51, pp.10, 2014, https://doi.org/10.1038/s12276-019-0311-6
- Biochemical and Conformational Characterization of Recombinant VEGFR2 Domain 7 vol.61, pp.11, 2014, https://doi.org/10.1007/s12033-019-00211-4
- Autograft microskin combined with adipose-derived stem cell enhances wound healing in a full-thickness skin defect mouse model vol.10, pp.1, 2014, https://doi.org/10.1186/s13287-019-1389-4
- Soluble fms-Like Tyrosine Kinase 1 Localization in Renal Biopsies of CKD vol.4, pp.12, 2014, https://doi.org/10.1016/j.ekir.2019.08.004
- Antiangiogenesis Potential of Alpinumisoflavone as an Inhibitor of Matrix Metalloproteinase-9 (MMP-9) and Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) vol.16, pp.None, 2014, https://doi.org/10.2174/1573408016666200123160509
- Neuroprotective and Neurorestorative Effects of Epo and VEGF: Perspectives for New Therapeutic Approaches to Neurological Diseases vol.26, pp.12, 2014, https://doi.org/10.2174/1381612826666200114104342
- Analyzing Impetus of Regenerative Cellular Therapeutics in Myocardial Infarction vol.9, pp.5, 2014, https://doi.org/10.3390/jcm9051277
- Quinoline-Based Molecules Targeting c-Met, EGF, and VEGF Receptors and the Proteins Involved in Related Carcinogenic Pathways vol.25, pp.18, 2014, https://doi.org/10.3390/molecules25184279
- Modulating the Crosstalk between the Tumor and the Microenvironment Using SiRNA: A Flexible Strategy for Breast Cancer Treatment vol.12, pp.12, 2014, https://doi.org/10.3390/cancers12123744
- Identification of Hub Genes and Key Pathways Associated with Anti-VEGF Resistant Glioblastoma Using Gene Expression Data Analysis vol.11, pp.3, 2021, https://doi.org/10.3390/biom11030403
- Angiogenesis Is Differentially Modulated by Platelet-Derived Products vol.9, pp.3, 2014, https://doi.org/10.3390/biomedicines9030251
- Anti-VEGF agents: As appealing targets in the setting of COVID-19 treatment in critically ill patients vol.101, pp.no.pb, 2014, https://doi.org/10.1016/j.intimp.2021.108257
- Down Syndrome Candidate Region 1 Isoform 1L regulated tumor growth by targeting both angiogenesis and tumor cells vol.140, pp.None, 2014, https://doi.org/10.1016/j.mvr.2021.104305