Anti-angiogenic and Anti-cell Adhesion Effects and Their Mechanism with the Extract of Camellia japonica Leaf

동백잎 추출물의 신생혈관 및 세포부착 억제작용과 그 기전

  • Song, Min-Gyu (Lab. of Biochemistry, College of Medicine, DongA University) ;
  • Seo, Hyo-Jin (Green Biotech Co., Ltd.) ;
  • Moon, Je-Hak (Department of Food Science and Technology and Funtional Food Research Center, Chonnam National University) ;
  • Park, Keun-Hyung (Department of Food Science and Technology and Funtional Food Research Center, Chonnam National University) ;
  • Kim, Jong-Deog (Department of Biotechnology Chonnam National University)
  • 송민규 (동아대학교 의과대학 생화학연구실) ;
  • 서효진 ((주)그린바이오텍) ;
  • 문제학 (전남대학교 응용생물공학부 식품공학) ;
  • 박근형 (전남대학교 응용생물공학부 식품공학) ;
  • 김종덕 (생명화학공학부 생명산업공학과)
  • Published : 2007.08.30

Abstract

Anti-angiogenesis and anti-cell adhesion effects were investigated with different dose of Camellia japonica leaf (CJL) extract for applying anti-cancer, anti-metastasis and anti-obesity. Cytotoxicity on HUVECs was very low at 200 ug/mL of CJL-extract. Anti-angiogenic ratio at increasing dose of 1.5 ug/mL, 3.0 ug/mL, 15 ug/mL and 30 ug/mL was showed 30.7%, 38.5%, 53.8%, and 70.0%, respectively. Also, anti-cell adhesion effect at concentration of $50{\mu}g{/well},\;100{\mu}g{/well}\;and\;200{\mu}g{/well}$ was expressed on E-selectin by 46.7%, 66.7%, and 86.76%, on VCAM-1, 23.0%, 61.5%, and 84.6%, and on ICAM-1, 11%, 55.5%, and 88.8%, respectively. For inquiring anti-angiogenesis mechanism, when western blot was performed with different dose of CJL extract, signal molecules of VEGFR-2, $\beta$-catenin and PI3-K were suppressed. As the signal transduction from VEGFR-2, $\beta$-catenin and PI3-K to NF-${\kappa}$B was interupted, angiogenesis could not be occurred causing not activated NF-kB. C. japonica leaf (CJL) is a useful herb for developing therapeutics of angiogenesis related diseases such as cancer, metastasis, rheumathioid arthritis and obesity.

동백잎의 열수 추출물이 신생혈관 생성억제 효과가 강하게 나타남으로써 이들 추출물에 대한 독성 시험을 HUVECs를 사용하여 검토한 바는 200 ug/mL에서도 독성이 없는 것으로 나타났으며, 1.5, 3.0, 15 및 30 ug/mL으로 농도가 증가함에 따라 각각 30.7%, 38.5%, 53.8% 그리고 70.0%의 신생혈관 생성억제율을 보였다. 세포부착 저해효과는 C. japonica leaf (CJL)의 농도가 50, 100, $200{\mu}g{/well}$으로 증가할 때 E-selectin이 46.7%, 66.7% 그리고 86.76%, VCAM-1이 23.0%, 61.5% 그리고 84.6%, ICAM-1이 11.0%, 55.5% 그리고 88.8%로 나타났다. C. japonica leaf (CJL)의 성분 증가에 따라 발현이 감소되는 것을 보아 농도가 증가함에 따라 cell adhesion의 저해 효과가 높아짐을 알 수 있었다. 신호전달의 기전규명은 western blot으로 행하였으며 CJL의 농도가 증가함에 따라 밴드의 발현이 약해지는 것을 관찰할 수 있다. 따라서 신호전달 분자인 VEGFR-2, $\beta$-catenin, Pl3-K는 CJL에 의해 신호전달이 차단되는 것을 볼 수 있고, 이는 NF-${\kappa}$B를 억제함으로서 신생혈관 생성을 저해하는 것으로 확인되었다. 따라서 동백잎은 신생혈관 생성에 의존하고 있는 것으로 알려진 암 등의 치료와 암전이의 억제, 류마치스성 관절염, 그리고 항비만제제로서 개발될 수 있음을 시사한다.

Keywords

References

  1. Folkman, J. and Y. Shing (1992), Angiogenesis, J. Bio. Chem. 267 (16), 10931-10934
  2. Folkman, J. and R. Cotran (1976), Relation of vascular proliferation to tumor growth, Int. Rev. Exp. Path. 16, 207-248
  3. Folkman, J. and M. Klagsbrun (1987), Agiogenic factors, Science 235, 442-447 https://doi.org/10.1126/science.2432664
  4. Jung, J. O. and D. K. Kim (2000), A method of medical treatment use angiogenesis, The Korean Society for Vascular Surgery 16(2), 265-269
  5. Folkman, J. (1995), Angiogenesis in cancer, vascular, rheumatoid and other disease, Nat. Med. 1, 27-31 https://doi.org/10.1038/nm0195-27
  6. Fidler, I. J. and L. M. Ellis (1994), The implications of angiogenesis for the biology and therapy of cancer metastasis, Cell. 79, 185-188 https://doi.org/10.1016/0092-8674(94)90187-2
  7. Hanahan, D. and J. Folkman (1996), Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis, Cell 86, 353-364 https://doi.org/10.1016/S0092-8674(00)80108-7
  8. Weidner, N. (1995), Intratumor microvessel density as a prognostic factor in cancer, Am. J. Pathol. 147, 9-19
  9. O'Reilly, M. S. (1997), The preclinical evaluation of angiogenesis inhibitors, Invest. New Drugs 15, 5-13 https://doi.org/10.1023/A:1005762410476
  10. Fox, S. B., K. C. Gatter, and A. L. Harris (1996), Tumor angiogenesis, J. Pathol. 179, 232-237 https://doi.org/10.1002/(SICI)1096-9896(199607)179:3<232::AID-PATH505>3.0.CO;2-A
  11. Leung, D. W., G. Cachianes, W. J. Kuang, D. V. Goeddel, and N. Ferrara (1989), Vascular endothelial growth factor is a secreted angiogenic mitogen, Science 246, 1306-1309 https://doi.org/10.1126/science.2479986
  12. Ferrara, N. and T. Davis-Smyth (1997), The biology of vascular endothelial growth factor, Endocr. Rev. 18, 4-25 https://doi.org/10.1210/er.18.1.4
  13. O'Reilly, M. S., L. Holmgren, and Y. Shing (1994), Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma, Cell 79, 315-328 https://doi.org/10.1016/0092-8674(94)90200-3
  14. O'Reilly, M. S., T. Boehm, and Y. Shing (1997), Endostatin: an endogenous inhibitor of angiogenesis and tumor growth, Cell 88, 277-285 https://doi.org/10.1016/S0092-8674(00)81848-6
  15. Pugsley, M. K. and R. Tabrizchi (2000), The vascular system; An overview of structure and function, J. Pharmacol. Toxicol. Mech. 44, 333-340 https://doi.org/10.1016/S1056-8719(00)00125-8
  16. Folkman, J. and M. Klagsberg (1987), Angiogenic factors, Science 235, 442-447 https://doi.org/10.1126/science.2432664
  17. Griffioen, A. W. and G. Molema (2000), Angiogenesis: Potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic Inflammation, Pharmacol. Rev. 52, 237-268
  18. Lee, S. H. and S. K. Kim (1992), Natural distribution and characteristics or populations or Camellia japonica in korea, J. Korean Soc. Hort. Sci. 33, 196-208
  19. Itokawa, H., H. Nakajima, A. Ikuta, and Y. Iitaka (1981), Two triterpenes from the flowers of Camellia japonica, Phytochem. 20, 2539-2542 https://doi.org/10.1016/0031-9422(81)83089-0
  20. Yoshikawa, M., E. Harada, T. Murakami, H. Matsuda, J. Yamahare, and N. Murakami (1994), Camellia saponnins B1, B2, C1 and C2, new type inhibitors of ethanol absorption in rats from the seeds or Camellia japonica L, Chem. Pharm, Bull. 42, 742-749 https://doi.org/10.1248/cpb.42.742
  21. Fujita, Y., H. Fujita, and H. Yoshikawa (1973), Comparative biochemical and Chemotaxonomical studies of the plants of Theaceae(I), Essential oils of Camellia sasanqua Thunb, C. japonica Linn., and Thea sinensis Linn, Osaka kogyo Gijutsu. Shikensho Kigo 25, 198-202
  22. Kim, J. D., L. Liu, W. Guo, and M. Meydani (2006), Chemical structure of flavonolsids in relation to modulation of angiogenesis and immune-endothelial cell adhesion, J. Nutrition. Biochem. 17, 165-176 https://doi.org/10.1016/j.jnutbio.2005.06.006
  23. Lim, J. K., H. J. Seo, E. O. Kim, M. Meydani, and J. D. Kim (2006), Identification of Anti-angiogenic and Anti-cell adhesion Materials from Enterobacteria of the Trachurus japonicus, J. Microbiol. Biotech. 16(10), 1544-1553
  24. Crandall, D. L., G. J. Hausman, and J. G. Karl (1997), A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives, Microcirculation 4, 211-232 https://doi.org/10.3109/10739689709146786
  25. Poissonnet, C. M., A. R. Burdi, and F. L. Bookstein (1983), Growth and development of human adipose (issue during early gestation, Early Hum. Dev. 8, 1-11 https://doi.org/10.1016/0378-3782(83)90028-2
  26. Wasseman, F. (1965), The development of adipose tissue in Handbook of physiology, Vol. 5, Renold A., E. Cahill G. F. eds. p7-100, washington DC. American Society of Physiology