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Abstract
Dieckol is a polyphenol compound isolated from brown algae that has anti-oxidant, anti-inflammatory, and anti-tumor activity. We 
examined the anti-angiogenic effects of dieckol in endothelial cells under hypoxic conditions. Treatment with CoCl2, a hypoxic 
mimetic agent, increased proliferation, adhesion, migration, and tube formation in HUVECs, as well as vessel sprouting in rat 
aortic rings, which correlated well with increased expression of hypoxia-inducible factor 1-alpha (HIF1α) and β1-integrin. Dieckol 
suppressed CoCl2-induced adhesion, migration, and tube formation in HUVECs and vessel sprouting in rat aortic rings. Dieckol 
treatment decreased CoCl2-induced overexpression of HIF1α and its downstream signaling molecules, including β1-integrin/Fak, 
Akt/eNOS, and p38 MAPK. These results suggest that dieckol is a novel angiogenesis inhibitor and a potential treatment for 
angiogenesis-dependent diseases in humans, such as malignant tumors. 
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Introduction

Angiogenesis is the physiological process in which new 
blood vessels are generated from pre-existing vessels, and it 
is involved in healing and reproductive processes, including 
wound healing, female reproduction, embryonic develop-
ment, organ formation, and tissue remodeling. Angiogenesis 
is strictly controlled by a wide range of regulators (Bussolino 
et al., 1997). Hypoxia-inducible factor 1α, HIF1 α, is a key 
regulator of angiogenesis that promotes the expression of a 
broad range of genes that respond to low oxygen concentra-
tions, and which induces the formation of new blood vessels. 
Therefore, hypoxia-induced angiogenesis has become an at-
tractive therapeutic strategy for the treatment of many human 
diseases, including cancer, ischemic heart disease, peripheral 
artery disease, and neovascular eye diseases, as well as a strat-
egy to accelerate wound healing (Krock et al., 2011). Howev-

er, the mechanisms involved in hypoxia-induced angiogenesis 
and the best manner in which to exploit it for the treatment of 
human diseases are not well understood and still under active 
investigation.

Angiogenesis is a complex process that includes endothe-
lial proliferation, migration, degradation of the extracellular 
matrix, tube formation, and sprouting of new capillary branch-
es, which depend on coordinated signaling by growth factors 
and cell adhesion receptors. Integrin is the principle adhesion 
receptor used by endothelial cells to interact with the extracel-
lular microenvironment, and integrin-mediated interactions 
play a critical role in regulating proliferation, migration, and 
survival of endothelial cells. Many studies have focused on 
the role of integrin family members αVβ3 and αVβ5, because 
earlier studies using antagonists or neutralizing antibodies 
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and beta-actin were obtained from Santa Cruz Biotechnology 
(Santa Cruz, CA, USA). Antibodies against Akt, pAkt, eNOS, 
and p38 MAPK were purchased Cell Signaling Technology 
(Beverly, MA, USA). Dieckol was prepared as reported by 
Lee et al. (2010). Dieckol did not affect viability of HUVECs 
at the concentrations of below 50 µM (Data not shown). The 
treatment of HUVECs with non-cytotoxic 25 µM dieckol in-
duced maximal decrease in the Cocl2-induced cell adhesion 
and migration (Data not shown). Therefore, 25 µM of dieckol 
was used in all the experiments.

Cell viability and cell proliferation assay

HUVECs were cultured for 4 passages. HUVECs were then 
trypsinized, plated at 6×103 cells/well on 12-well tissue culture 
plates (Falcon, USA) and continuously cultured in 3 mL M199 
containing 1% FBS. When the cells were 80–90% confluent, 
the culture medium was replaced with serum-free M199 for 
12 h, after which the cultures were divided into 2 groups: with 
or without 25 µM dieckol. The viability of cells after dieckol 
treatment was assessed by the MTT [3-(4, 5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide] assay. HUVEC mor-
phology was assessed with phase-contrast microscopy and 
cell counts were also calculated by hemocytometry.

Cell adhesion assay

HUVECs were incubated in the presence or absence of 
100 µM CoCl2 and 25 µM dieckol for 24 h. The cells were 
harvested and resuspended in culture medium. The cells were 
then transferred to a 24-well plate that was precoated with fi-
bronectin (25 µg/mL). After incubation for 1 h at 37°C, the 
medium was discarded and washed with PBS to remove the 
non-adherent cells. Attached cells were photographed and 
quantified.

Cell migration assay

HUVEC migratory function, which is essential for angio-
genesis, was examined using a modified Boyden chamber 
technique. A 24-well Transwell apparatus (Costar) was used, 
with each well containing a 6.5 mm polycarbonate membrane 
with 8 μm pores that was coated with type I collagen (Sigma-
Aldrich, St. Louis, MO, USA). HUVECs (4×104) were placed 
on the membrane, and the chamber was immersed in a 24-
well plate that was filled with growth factor-free M199 culture 
media with or without 25 µM dieckol. After incubation for 24 
h, the membrane was washed briefly with PBS and the upper 
side of the membrane was wiped gently with a cotton ball, 
after which it was removed and stained with hematoxylin and 
eosin (H&E). The magnitude of HUVEC migration was eval-
uated by counting the migrated cells in 4 random high-power 
(100×) microscope fields.

for these proteins reported dramatic inhibition of angiogen-
esis (Brooks et al., 1994; Friedlander et al., 1995). However, 
mice lacking αV, β3, or β5, which are the constituent proteins 
of αVβ3 and αVβ5, do not show obvious angiogenic defects 
(Bader et al., 1998; Francis et al., 2002), raising the possi-
bility that other integrin members control angiogenesis. Ac-
cumulating evidence suggests that β1-integrin is involved in 
angiogenesis. β1-Integrin null mice show reduced vasculature 
and irregular vessel formation (Bloch et al., 1997). Tumor-
associated vessels have been reported to overexpress fibronec-
tin and β1-integrin, and treatment with function-blocking an-
tibodies and inhibitory molecules against β1-integrin inhibits 
angiogenesis in response to tumor growth factors (Mettouchi 
and Meneguzzi, 2006). In addition, several endogenous in-
hibitors of angiogenesis have been reported to directly bind 
to β1-integrin. Endorepellin and endostatin, which are proteo-
lytic fragments of the membrane protein perlecan or collagen 
XVIII, exhibit anti-angiogenic activity through binding to β1 
integrin (Sudhakar et al., 2003; Bix et al., 2004), strongly sug-
gesting a major role for β1-integrin in angiogenesis. Several 
recent studies have also reported that expression of fibronectin 
and β1-integrin are increased under hypoxic conditions, and 
this overexpression regulates the proliferation and migration 
of progenitor cells and stem cells, although the related signal-
ing mechanisms have not been defined (Irigoyen et al., 2008). 
Therefore, in this study we focused on the role of β1-integrin 
in hypoxia-induced angiogenesis in human umbilical vein en-
dothelial cells (HUVECs), and particularly on the anti-angio-
genic effects of dieckol, which was identified as an inhibitor of 
β1-integrin signaling in our recent screening study (Park and 
Jeon, 2012). Dieckol is a phlorotannin isolated from brown 
algae that has recently been reported to exhibit various bio-
logical activities in multiple cell types (Heo et al., 2009; Lee 
et al., 2010). However, its biological and biochemical effects 
in endothelial cells have not been reported.

Materials and Methods

Cell culture and reagents

Human umbilical vein endothelial cells (HUVECs) were 
obtained from the American Type Culture Collection (Manas-
sas, VA, USA). Cells were cultured in M199 medium (Invitro-
gen, Carlsbad, CA, USA) supplemented with 20% fetal bovine 
serum (FBS), 100 units/mL penicillin, 100 µg/mL streptomy-
cin, 3 ng/mL basic fibroblast growth factor (Upstate Biotech-
nology, NY), and 5 units/mL heparin. The cells were grown 
in 5% CO2 in air at 37°C. For the experiments, cells were de-
tached with trypsin-EDTA. Matrigel was obtained from BD 
Biosciences (St Louis, MO, USA). Mouse monoclonal anti-
human β1-integrin antibody was from Cell Signaling Tech-
nology (Beverly, MA, USA). Antibodies against Fak, Y397 
Fak and primary antibodies rabbit anti-SAPK, anti-pSAPK, 
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Western blotting

HUVEC cells were treated with 100 µM CoCl2 or 25 µM 
dieckol and then the cells were homogenized in RIPA buffer. 
The lysates were centrifuged at 10,000×g for 15 min, super-
natant was subjected to SDS-PAGE and transferred to PVDF. 
The levels of protein in each sample were determined by im-
munoblotting with antibodies.

Statistical analysis

All data are presented as mean ± SEM. The significance of 
differences between the means were analyzed by Student’s t-
test. All p-values of less than 0.05 were considered significant.

Results

Dieckol inhibits CoCl2-induced proliferation, 
adhesion, and migration of HUVECs

To determine the anti-angiogenic activity of dieckol, we 
first examined hypoxia-induced proliferation, adhesion, and 
migration of HUVECs. HUVECs were treated with 100 µM 
of the hypoxic mimetic agent CoCl2 for 24 h as described pre-
viously (Zagzag et al., 2003; Newcomb et al., 2005) in the 
absence or presence of 25 µM dieckol. CoCl2 treatment in-
creased the proliferation of HUVECs by 37% compared to 
PBS-treated control cells, and dieckol significantly inhibited 
the CoCl2-induced proliferation (Fig. 1A). This inhibitory ef-
fect of dieckol was not due to the cytotoxicity of dieckol to en-
dothelial cells, because 25 µM dieckol treatment had no effect 
on normal growth of HUVECs. In addition, CoCl2 treatment 

Matrigel tube formation assay

A Matrigel tube formation assay was performed to assess 
the ability of HUVECs to form endothelial cell vascular struc-
tures, because this ability is believed to be important in the 
formation of new vessels (Rafii and Lyden, 2003). Briefly, 250 
µL of growth factor-reduced Matrigel (Becton Dickinson) was 
pipetted into a 16-mm diameter tissue culture well and polym-
erized for 30 min at 37 °C. HUVECs incubated in M199 me-
dium with 1% FBS for 12 h were harvested after trypsin treat-
ment and suspended in M199 medium with 1% FBS. Next, 25 
µM dieckol was added to the cells for 30 min at room tem-
perature, after which they were seeded and plated onto a layer 
of Matrigel at a density of 2×105 cells/well, followed by the 
addition of 100 µM CoCl2. After 16 h, the cultures were pho-
tographed. The area covered by the tube network was deter-
mined using an optical imaging technique, in which pictures 
of the tubes were scanned in Adobe Photoshop and analyzed 
with Image-Pro® Plus 4.5 (Media CyberMetics, Inc.).

Aortic ring assay

As described previously (Nicosia and Ottinetti, 1990), aor-
tas were harvested from Sprague-Dawley rats at 6 weeks of 
age. Plates (48-well) were coated with 120 µL of Matrigel. 
After gelling, the rings were placed in the 48-well plates and 
sealed in place with an overlay of 50 µL of Matrigel. CoCl2 
with or without dieckol was added to the wells in 200 µL of 
human endothelial serum-free medium (Invitrogen). Medium 
alone was added to the negative control cells. On day 4, cells 
were fixed and stained with Diff-Quick. Each treatment was 
assayed six times.

Fig. 1. Dieckol inhibits CoCl2-induced proliferation, adhesion, and migration of HUVECs. A, HUVECs were incubated in the absence or presence of 100 
µM CoCl2 and 25 µM dieckol for 24 h and then assessed for cell proliferation; B, Cells were treated as described for A, and cell adhesion was determined on 
a fibronectin-coated dish. The adhered cells were quantified by cell counting as described in the methods section. Values are means ± standard deviation 
from 3 independent experiments; C, Wound-healing scratch assays were performed with HUVECs plated onto fibronectin-coated dishes. After serum 
starvation, cells were incubated in the absence or presence of 100 µM CoCl2 and 25 µM dieckol for 24 h. A sterile 200 µL pipette tip was used to scratch the 
cells to form a model wound. Cell migration was quantified by measurement of the gap size of 4 different images at 0 and 16 h. Results of 3 independent 
experiments were averaged. PBS-treated cells were used as a control. ∗, P < 0.05 compared with CoCl2.

A CB
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control cells, whereas simultaneous dieckol treatment almost 
completely abolished these effects. These results suggest that 
dieckol regulates hypoxia-induced angiogenic responses that 
depend on the extracellular adhesion of HUVECs.

Dieckol inhibits CoCl2-induced capillary-like tube 
formation in HUVECs and aortic ring sprouting

We measured the effect of CoCl2 and dieckol on the ability 
of HUVECs to form capillary-like structures on Matrigel. As 
shown in Fig. 2A, 16 h incubation with CoCl2 promoted the 
formation of elongated and robust capillary-like tube struc-

increased the attachment and migration of HUVECs onto fi-
bronectin (Fig. 1B and 1C). HUVECs were preincubated in 
the absence or presence of 100 µM CoCl2 and 25 µM dieckol 
for 24 h, and then transferred to the fibronectin-coated plates 
for the adhesion assay or scratched by a pipette for the wound-
healing migration assay. After incubation for 1 h or 16 h, at-
tached cells were quantified and the distances of migrating 
cells to the wound origin were measured, respectively (Fig. 1B 
and 1C). Dieckol alone had no significant effect on basal at-
tachment and migration of cells. Treatment of HUVECs with 
CoCl2 induced increases of approximately 48% and 75% in 
attachment and migration, respectively, in comparison to the 

A B

Fig. 2. Dieckol inhibits CoCl2-induced tube formation in vitro and aortic ring sprouting ex vivo. A, HUVECs were incubated in medium with 1% FBS for 12 
h, replated on Matrigel-coated plates at a density of 2 × 105 cells/well, and then incubated in the absence or presence of 100 µM CoCl2 and 25 µM dieckol. 
After 16 h, the cultures were photographed. Representative endothelial tubes are shown; B, Aortas in Matrigel were treated with 100 µM CoCl2 in the 
absence or presence of 25 µM dieckol and stained with Diff-Quick on day 6. Representative aortic rings were photographed. 

Fig. 3. Dieckol attenuates CoCl2-induced expression of hypoxia-inducible factor 1-alpha (HIF1α) and β1-integrin. A, HUVECs were incubated in the 
absence or presence of 100 µM CoCl2 and 25 µM dieckol for 24 h and then harvested for western blotting; B, HUVECs in Matrigel were pretreated with a 
β1-integrin-neutralizing antibody (200 ng/mL) for 30 min before incubation with CoCl2 for 16 h, and tube formation was induced and then photographed. 
The area covered by the tube network was quantitated using Image-Pro Plus Software. Experiments were repeated and the presented values are means of 
triplicates. PBS-treated cells were used as a control. ∗, P < 0.05 compared with CoCl2.

A CB
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has been found to be responsible for cell proliferation, adhe-
sion, and invasive migration during angiogenesis in response 
to hypoxic conditions (Niewiarowska et al., 2011; Li et al., 
2012). The role of β1-integrin in CoCl2-induced hypoxic an-
giogenesis in HUVECs was also demonstrated in this study 
(Fig. 3C). HUVECs were pre-incubated with a specific an-
tibody for β1-integrin before being treated with CoCl2. Af-
ter treatment with the β1-integrin antibody, CoCl2 treatment 
failed to stimulate tube formation in HUVECs, indicating 
that β1-integrin plays a major role in CoCl2-induced angio-
genesis. Based on this result, we tested the effects of CoCl2 
and dieckol on the expression of β1-integrin in endothelial 
cells. As shown in Fig. 3B, CoCl2 effectively increased the 
expression of β1-integrin in HUVECs, and dieckol sup-
pressed this effect. Additionally, CoCl2 treatment increased 
the expression and phosphorylation of focal adhesion kinase 
(Fak), a major downstream molecule of β1-integrin, and this 
effect was significantly inhibited by dieckol.

In addition, we determined whether dieckol regulates cel-
lular signaling pathways involved in the response to hypoxic 
stress. The activation of Akt/NO signaling was measured, as 
well as the activation of mitogen-activated protein kinase 
(MAPK) family proteins p38 MAPK, extracellular regulated 
kinase (ERK), and stress-activated protein kinase (SAPK) 
(Fig. 4). CoCl2 treatment induced phosphorylation of Akt 
(Ser-473) and endothelial NO synthase (eNOS), and this 
phosphorylation was blocked by dieckol. CoCl2-induced p38 
MAPK activation, but not CoCl2-induced ERK and SAPK 
activation, was inhibited by dieckol. Taken together, these 
data suggest that dieckol inhibits CoCl2-induced signaling 
downstream of HIF1α during hypoxia-induced angiogenesis 
in HUVECs via effects on β1-integrin, Fak, Akt/eNOS, and 
p38 MAPK.

tures, and the number of tubes was much greater than that of 
the control cells; CoCl2 treatment induced an increase of ap-
proximately 2-fold in comparison to the PBS-treated control 
cells. CoCl2-induced tube formation in HUVECs was inhib-
ited by treatment with 25 µM dieckol. In addition, the sprout-
ing of vessels from excised aortic rings was investigated to 
determine whether 25 µM dieckol inhibits CoCl2-induced 
angiogenesis ex vivo (Fig. 2B). We found that 100 µM CoCl2 
stimulated capillary sprouting from rat aortic rings, whereas 
dieckol treatment significantly attenuated the CoCl2-induced 
vessel sprouting. Taken together, these results indicate that 
dieckol treatment regulates major processes involved in hy-
poxia-induced angiogenesis, including endothelial cell pro-
liferation, adhesion, migration, and tube formation, as well 
as vessel sprouting, which suggests that dieckol influences 
HIF1α signaling to regulate hypoxia-induced angiogenesis in 
endothelial cells.

Dieckol inhibits CoCl2-induced expression of 
HIF1α and downstream signaling molecules in 
HUVECs

To understand the molecular mechanisms by which dieck-
ol inhibits CoCl2-induced angiogenesis, we investigated the 
effect of dieckol on the expression of hypoxia-inducible fac-
tor 1-alpha (HIF1α) (Fig. 3A). HUVECs were treated with 
100 µM CoCl2 in the presence or absence of 25 µM dieckol. 
CoCl2 treatment increased HIF1α expression approximately 
2.8-fold compared with the PBS-treated control cells, and 
this effect was attenuated by dieckol. To further examine the 
molecular mechanisms by which dieckol inhibits angiogen-
esis in HUVECs, we investigated the effects of CoCl2 and di-
eckol on the expression of β1 integrin (Fig. 3B). β1 Integrin 

Fig. 4. Dieckol decreases the activation of Akt/eNOS, and p38 MAPK in HUVECs. HUVECs were incubated in the absence or presence of 100 µM CoCl2 and 
25 µM dieckol for 24 h. Cell lysates were analyzed for Akt, pAkt, eNOS, peNOS, p38 MAPK, pp38 MAPK, ERK, pERK , SAPK, pSAPK, and β-actin.
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that dieckol inhibits signaling downstream of HIF1α, includ-
ing signaling mediated by β1-integrin, Fak, Akt/eNOS, and 
p38 MAPK, and these effects of dieckol were associated with 
inhibition of CoCl2-induced angiogenesis in HUVECs. Thus, 
dieckol inhibits hypoxia-induced signaling in HUVECs 
through several defined molecular mechanisms. These re-
sults extend our understanding of the molecular mechanisms 
through which dieckol exerts its anti-tumor angiogenic ef-
fects, and suggest that dieckol is a potent HIF1α inhibitor and 
a potential chemotherapeutic agent in the clinic.
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