• Title/Summary/Keyword: Antenna Substrate

Search Result 580, Processing Time 0.029 seconds

Package-type polarization switching antenna using silicon RF MEMS SPDT switches (실리콘 RF MEMS SPDT 스위치를 이용한 패키지 형태의 편파 스위칭 안테나)

  • Hyeon, Ik-Jae;Chung, Jin-Woo;Lim, Sung-Joon;Kim, Jong-Man;Baek, Chang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1511_1512
    • /
    • 2009
  • This paper presents a polarization switching antenna integrated with silicon RF MEMS SPDT switches in the form of a package. A low-loss quartz substrate made of SoQ (silicon-on-quartz) bonding is used as a dielectric material of the patch antenna, as well as a packaging lid substrate of RF MEMS switches. The packaging/antenna substrate is bonded with the bottom substrate including feeding lines and RF MEMS switches by BCB adhesive bonding, and RF energy is transmitted from signal lines to antenna by slot coupling. Through this approach, fabrication complexity and degradation of RF performances of the antenna due to the parasitic effects, which are all caused from the packaging methods, can be reduced. This structure is expected to be used as a platform for reconfigurable antennas with RF MEMS tunable components. A linear polarization switching antenna operating at 19 GHz is manufactured based on the proposed method, and the fabrication process is carefully described. The s-parameters of the fabricated antenna at each state are measured to evaluate the antenna performance.

  • PDF

A Terahertz Yagi-Uda Antenna with High Input Impedance (높은 입력 임피던스를 가지는 테라헤르츠 Yagi-Uda 안테나)

  • Han, Kyung-Ho;Nguyen, Troung Khang;Park, Ik-Mo;Han, Hae-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.65-70
    • /
    • 2009
  • In this paper, a THz Yagi-Uda antenna with high input impedance is designed. By placing the antenna on a thin substrate, end-fire radiation patterns with high antenna impedance can be obtained even when the substrate has high relative dielectric constant. The proposed Yagi-Uda antenna has high input resistance of approximately $4,400{\Omega}$ at the resonance frequency which is obtained by using a U-shaped dipole as a driver element. It is expected that the Yagi-Uda antenna on a thin substrate can achieve much higher terahertz output power than the conventional THz antennas.

Radiation Characteristics of Patch Antennas with an Array of Pins for Various Substrate Thicknesses (기판 두께에 따른 핀 배열을 가지는 패치 안테나의 방사 특성)

  • Cho, Myung-Ki;Kim, Tae-Young;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.10
    • /
    • pp.63-71
    • /
    • 2009
  • The patch antennas with an array of pins with excellent radiation characteristics are investigated for several substrate thicknesses. The patch length of a pin array patch antenna for the maximum suppression of radiation in the horizontal plane decreases as the substrate thickness increases. The radiation in the horizontal plane of a pin array patch antenna is very small compared to that of a conventional patch antenna. The increase of forward radiation and the decrease of backward radiation of a pin array patch are obtained compared to those of a conventional patch antenna. The half-power beamwidth of E-plane radiation pattern of a pin array patch antenna is narrow compared to that of a conventional patch antenna so that the directivity is improved.

Enhanced-Gain Planar Substrate-Integrated Waveguide Cavity-Backed Slot Antenna with Rectangular Slot Window on Superstrate

  • Kang, Hyunseong;Lim, Sungjoon
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.1062-1065
    • /
    • 2014
  • A novel substrate-integrated waveguide (SIW) cavity-backed slot antenna is proposed in this study to achieve enhanced-gain performance. The peak gain is remarkably improved with the use of an SIW cavity and metallic superstrate. The superstrate comprises a single rectangular slot window and two half-wavelength patches. The gain can be enhanced by combining the in-phase radiating fields. Further, the 10 dB bandwidth of the proposed antenna ranges from 2.32 GHz to 2.49 GHz, which covers the wireless local area network band. The measured peak gain is 9.44 dBi at 2.42 GHz.

A Reconfigurable Multilayer Substrate Antenna for Aerospace Applications

  • amine, Ksiksi Mohamed;azizi, Mohamed karim;Gharsallah, Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.358-361
    • /
    • 2021
  • In this paper, we have simulated a rectangular microstrip patch antenna for aerospace applications based on graphen as a conductor and a multilayer substrate .as a result of the use of the graphen patch we obtained a reconfigurable antenna on the frequency range (0.6-0.7 terahertz) with a gain up to 12 db. The simulation of this antenna has been performed by using CST Microwave Studio, which is a commercially available finite integral based electromagnetic simulator.

A Filtering Antenna for Wireless In-Flight Entertainment Communication System at Millimeter-Wave Band (기내 엔터테인먼트 통신 시스템을 위한 밀리미터파 대역의 여파기 결합 안테나)

  • Seo, Tae-Yoon;Lee, Jae-Wook;Cho, Choon-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • In this paper, H-plane filtering-horn antenna operating at millimeter frequency band is proposed with embedded filter and three-layered dielectric lens for frequency selection and maintenance of main beam direction, respectively. The waveguide-typed filter and H-plane sectoral horn antenna are replaced with considerably size-reduced PCB substrate-typed filtering antenna using via fences and several posts. The waveguide-typed filter and H-plane sectoral horn antenna were designed in air-filled waveguide and then combined into size-reduced PCB substrate. For the control of the thickness of dielectric lens, single and multi dielectric lens have been employed. As a result of antenna gain, 8 and 13.5 dBi have been obtained at 41.5 GHz, respectively, from the simulations of single and multi-lens antennas.

Mutual Coupling Characteristics of a 2-element Array Antenna using Inductor Loaded Patch Antennas (Inductor Loaded 패치안테나를 이용한 2 소자 배열 안테나의 상호결합 특성)

  • Kim, Gun-Su;Kim, Tae-Young;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.92-99
    • /
    • 2011
  • Effect of a finite grounded substrate on mutual coupling characteristics of a 2-element array antenna using inductor loaded patch antennas is investigated. The mutual coupling characteristics of a 2-element array antenna using inductor loaded patch antennas positioned along the E-plane are compared with those positioned along the H-plane. The magnitude of mutual coupling is very small and the distance between the center of element and the substrate edge on the E-plane for the minimum mutual coupling is similar regardless of the direction at which antenna elements are positioned in the case of a 2-element array antenna using inductor loaded patch antennas.

Spectral Domain Analysis of Input Impedance and Radiation Pattern in Rectangular Microstrip Patch Antenna on Anisotropy Substrates with Airgap (공기 갭을 갖는 이방성 매질 위의 사각 마이크로스트립 패치 안테나의 입력 임피던스와 방사패턴에 대한파수 영역 해석)

  • 윤중한;곽경섭
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.5
    • /
    • pp.187-196
    • /
    • 2003
  • Effects of Airgap and anisotropy substrate on input impedance and radiation pattern of rectangular microstrip patch antenna are studied in terms of an integral equation formulation. The input impedance and radiation pattern of microstrip patch antenna is investigated by using Galerkin's moment method in solving the integral equation. Sinusoidal functions are selected as basis functions, which resemble in the actual standing wave on the Patch. From the numerical results, the variation of input impedance and radiation patterns in the variation of air gap thickness, anisotropy ratio of substrate, and relative permittivity of anisotropy substrate are presented.

Effect of Finite Substrate Size on the Radiation Characteristics of H-plane Linear Array Antennas (유한한 기판 크기가 H-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.39-49
    • /
    • 2013
  • The effect of the finite substrate size on the radiation characteristics of H-plane linear microstrip array antennas is investigated. The radiation characteristics versus scan angle are systematically analyzed for 5-element H-plane linear array antennas with various substrate sizes and element spacings for the substrates with different dielectric constants. The distance between the antenna center and the substrate edge on the E-plane for the enhancement of the radiation characteristics of the array antenna is presented.

Frequency properties of Microstrip Antenna using LiNbO$_3$ (마이크로스트립 안테나의 주파수 이동 특성에 관한 연구)

  • 오승재;우형관;하용만;김영훈;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.375-378
    • /
    • 2000
  • This paper investigated that resonant frequencies of microstrip patch antenna were tunable when piezoelectric materials were used as the antenna substrates. The resonant frequencies of the microstrip antenna using the piezoelectric substrate, like PZT, LiNbO$_3$ were able to be controlled by applied DC voltage. The frequency variation of the air gap antenna was 29MHz when the voltage variation was 14[kV/cm], and the frequency variation of microstrip patch antenna made of LiNbO$_3$substrate was 29MHz when voltage variation was 6[kV/cm].

  • PDF