• 제목/요약/키워드: Ant algorithm

검색결과 156건 처리시간 0.024초

Design of Smart City Considering Carbon Emissions under The Background of Industry 5.0

  • Fengjiao Zhou;Rui Ma;Mohamad Shaharudin bin Samsurijan;Xiaoqin Xie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.903-921
    • /
    • 2024
  • Industry 5.0 puts forward higher requirements for smart cities, including low-carbon, sustainable, and people-oriented, which pose challenges to the design of smart cities. In response to the above challenges, this study introduces the cyber-physical-social system (CPSS) and parallel system theory into the design of smart cities, and constructs a smart city framework based on parallel system theory. On this basis, in order to enhance the security of smart cities, a sustainable patrol subsystem for smart cities has been established. The intelligent patrol system uses a drone platform, and the trajectory planning of the drone is a key problem that needs to be solved. Therefore, a mathematical model was established that considers various objectives, including minimizing carbon emissions, minimizing noise impact, and maximizing coverage area, while also taking into account the flight performance constraints of drones. In addition, an improved metaheuristic algorithm based on ant colony optimization (ACO) algorithm was designed for trajectory planning of patrol drones. Finally, a digital environmental map was established based on real urban scenes and simulation experiments were conducted. The results show that compared with the other three metaheuristic algorithms, the algorithm designed in this study has the best performance.

개미군집 최적화 알고리즘을 이용한 상수도관망 시스템의 최저비용설계 모델의 현장 적용 (Field Application of Least Cost Design Model on Water Distribution Systems using Ant Colony Optimization Algorithm)

  • 박상혁;최홍순;구자용
    • 상하수도학회지
    • /
    • 제27권4호
    • /
    • pp.413-428
    • /
    • 2013
  • In this study, Ant Colony Algorithm(ACO) was used for optimal model. ACO which are metaheuristic algorithm for combinatorial optimization problem are inspired by the fact that ants are able to find the shortest route between their nest and food source. For applying the model to water distribution systems, pipes, tanks(reservoirs), pump construction and pump operation cost were considered as object function and pressure at each node and reservoir level were considered as constraints. Modified model from Ostfeld and Tubaltzev(2008) was verified by applying 2-Looped, Hanoi and Ostfeld's networks. And sensitivity analysis about ant number, number of ants in a best group and pheromone decrease rate was accomplished. After the verification, it was applied to real water network from S water treatment plant. As a result of the analysis, in the Two-looped network, the best design cost was found to $419,000 and in the Hanoi network, the best design cost was calculated to $6,164,384, and in the Ostfeld's network, the best design cost was found to $3,525,096. These are almost equal or better result compared with previous researches. Last, the cost of optimal design for real network, was found for 66 billion dollar that is 8.8 % lower than before. In addition, optimal diameter for aged pipes was found in this study and the 5 of 8 aged pipes were changed the diameter. Through this result, pipe construction cost reduction was found to 11 percent lower than before. And to conclusion, The least cost design model on water distribution system was developed and verified successfully in this study and it will be very useful not only optimal pipe change plan but optimization plan for whole water distribution system.

순회 외판원 문제에서 최악 경로를 고려한 개미 알고리즘 (The Ant Algorithm Considering the Worst Path in Traveling Salesman problems)

  • 이승관;이대호
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2343-2348
    • /
    • 2008
  • 개미 알고리즘은 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법으로, 그리디 탐색뿐만 아니라 긍정적 피드백을 사용한 모집단에 근거한 접근법으로 순회 판매원 문제를 풀기 위해 처음으로 제안되었다. 본 논문은 개선된 $AS_{rank}$ 알고리즘을 제안한다. 기존 $AS_{rank}$ 알고리즘은 최적 경로로 구성될 가능성이 높은 경로에 대해서만 페로몬 갱신을 수행하고 최적 경로를 구성할 가능성이 낮은 경로에 대해서는 전혀 고려하지 않는다. 이것을 고려해 본 논문에서는 최적 경로로 구성될 가능성이 낮은 경로(에이전트들이 구성한 경로 중 최악 경로)에 대해 페로몬을 증발시켜 다음 탐색 과정에서 해당 경로 탐색을 줄이고자 하였다. 이를 통해 다음 사이클에서 에이전트들이 해당 간선의 선택 확률을 줄여줌으로써 기존 ACS 알고리즘에 비해 평균 탐색 시간과 평균 반복 횟수를 줄일 수 있음을 보여준다.

선호도 기반 최단경로 탐색을 위한 휴리스틱 융합 알고리즘 (A Combined Heuristic Algorithm for Preference-based Shortest Path Search)

  • 옥승호;안진호;강성호;문병인
    • 대한전자공학회논문지TC
    • /
    • 제47권8호
    • /
    • pp.74-84
    • /
    • 2010
  • 본 논문에서는 개미 군집 최적화 (Ant Colony Optimization; ACO) 및 A* 휴리스틱 알고리즘이 융합된 선호도 기반 경로탐색 알고리즘을 제안한다. 최근 ITS (Intelligent Transportation Systems)의 개발과 함께 차량용 내비게이션의 사용이 증가하면서 경로탐색 알고리즘의 중요성이 더욱 높아지고 있다. 기존의 Dijkstra 및 A*와 같은 대부분의 최단경로 탐색 알고리즘은 최단거리 또는 최단시간 경로 탐색을 목표로 한다. 하지만 이러한 경로 탐색 결과는 더 안전하고 특정 경로를 선호하는 운전자를 위한 최적의 경로가 아니다. 따라서 본 논문에서는 선호도 기반 최단 경로 탐색 알고리즘을 제안한다. 제안된 알고리즘은 주어진 맵의 링크 속성 정보를 이용하며, 각 링크에 대한 사용자 선호도는 내비게이션 사용자에 의해 설정되어 진다. 제안된 알고리즘은 C로 구현하였으며, 64노드 및 118링크로 구성된 맵에서 다양한 파라미터를 통해 성능을 측정한 결과 본 논문에서 제안한 휴리스틱 융합 알고리즘은 선호도 기반 경로뿐만 아니라 최단 경로 탐색에도 적합함을 알 수 있었다.

규칙적인 NoC 구조에서의 네트워크 지연 시간 최소화를 위한 어플리케이션 코어 매핑 방법 연구 (Application Core Mapping to Minimize the Network Latency on Regular NoC Architectures)

  • 안진호;김홍식;김현진;박영호;강성호
    • 대한전자공학회논문지SD
    • /
    • 제45권4호
    • /
    • pp.117-123
    • /
    • 2008
  • 본 논문에서는 규칙적인 형태의 NoC 중 mesh 구조를 기반으로 한 어플리케이션 코어 매핑 알고리즘 연구 내용을 소개한다. 제안된 알고리즘은 ant colony optimization(ACO) 기법을 이용하여 주어진 SoC 내장 코어 및 NoC 특성 정보를 대상으로 가장 효과적인 코어 배치 결과를 도출한다. 설계 목적으로 사용된 네트워크 지연 시간 측정을 위해 평균 흡수 계산 결과를 이용하였으며 제한 조건으로는 NoC 대역폭을 기준으로 하였다. 12개의 코어로 구성되는 실제 기능 블럭을 대상으로 실험한 결과 계산 시간이나 매핑 결과 모두 우수함을 확인할 수 있었다.

A Common Bitmap Block Truncation Coding for Color Images Based on Binary Ant Colony Optimization

  • Li, Zhihong;Jin, Qiang;Chang, Chin-Chen;Liu, Li;Wang, Anhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권5호
    • /
    • pp.2326-2345
    • /
    • 2016
  • For the compression of color images, a common bitmap usually is generated to replace the three individual bitmaps that originate from block truncation coding (BTC) of the R, G and B channels. However, common bitmaps generated by some traditional schemes are not the best possible because they do not consider the minimized distortion of the entire color image. In this paper, we propose a near-optimized common bitmap scheme for BTC using Binary Ant Colony Optimization (BACO), producing a BACO-BTC scheme. First, the color image is compressed by the BTC algorithm to get three individual bitmaps, and three pairs of quantization values for the R, G, and B channels. Second, a near-optimized common bitmap is generated with minimized distortion of the entire color image based on the idea of BACO. Finally, the color image is reconstructed easily by the corresponding quantization values according to the common bitmap. The experimental results confirmed that reconstructed image of the proposed scheme has better visual quality and less computational complexity than the referenced schemes.

DEVELOPMENT OF AUTONOMOUS QoS BASED MULTICAST COMMUNICATION SYSTEM IN MANETS

  • Sarangi, Sanjaya Kumar;Panda, Mrutyunjaya
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.342-352
    • /
    • 2021
  • Multicast Routings is a big challenge due to limitations such as node power and bandwidth Mobile Ad-hoc Network (MANET). The path to be chosen from the source to the destination node requires protocols. Multicast protocols support group-oriented operations in a bandwidth-efficient way. While several protocols for multi-cast MANETs have been evolved, security remains a challenging problem. Consequently, MANET is required for high quality of service measures (QoS) such infrastructure and application to be identified. The goal of a MANETs QoS-aware protocol is to discover more optimal pathways between the network source/destination nodes and hence the QoS demands. It works by employing the optimization method to pick the route path with the emphasis on several QoS metrics. In this paper safe routing is guaranteed using the Secured Multicast Routing offered in MANET by utilizing the Ant Colony Optimization (ACO) technique to integrate the QOS-conscious route setup into the route selection. This implies that only the data transmission may select the way to meet the QoS limitations from source to destination. Furthermore, the track reliability is considered when selecting the best path between the source and destination nodes. For the optimization of the best path and its performance, the optimized algorithm called the micro artificial bee colony approach is chosen about the probabilistic ant routing technique.

Using Ant Colony Optimization to Find the Best Precautionary Measures Framework for Controlling COVID-19 Pandemic in Saudi Arabia

  • Alshamrani, Raghad;Alharbi, Manal H.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.352-358
    • /
    • 2022
  • In this paper, we study the relationship between infection rates of covid 19 and the precautionary measures and strict protocols taken by Saudi Arabia to combat the spread of the coronavirus disease and minimize the number of infected people. Based on the infection rates and the timetable of precautionary measures, the best framework of precautionary measures was identified by applying the traveling salesman problem (TSP) that relies on ant colony optimization (ACO) algorithms. The proposed algorithm was applied to daily infected cases data in Saudi Arabia during three periods of precautionary measures: partial curfew, whole curfew, and gatherings penalties. The results showed the partial curfew and the whole curfew for some cities have the minimum total cases over other precautionary measures. The gatherings penalties had no real effect in reducing infected cases as the other two precautionary measures. Therefore, in future similar circumstances, we recommend first applying the partial curfew and the whole curfew for some cities, and not considering the gatherings penalties as an effective precautionary measure. We also recommend re-study the application of the grouping penalty, to identify the reasons behind the lack of its effectiveness in reducing the number of infected cases.

Integrating Ant Colony Clustering Method to a Multi-Robot System Using Mobile Agents

  • Kambayashi, Yasushi;Ugajin, Masataka;Sato, Osamu;Tsujimura, Yasuhiro;Yamachi, Hidemi;Takimoto, Munehiro;Yamamoto, Hisashi
    • Industrial Engineering and Management Systems
    • /
    • 제8권3호
    • /
    • pp.181-193
    • /
    • 2009
  • This paper presents a framework for controlling mobile multiple robots connected by communication networks. This framework provides novel methods to control coordinated systems using mobile agents. The combination of the mobile agent and mobile multiple robots opens a new horizon of efficient use of mobile robot resources. Instead of physical movement of multiple robots, mobile software agents can migrate from one robot to another so that they can minimize energy consumption in aggregation. The imaginary application is making "carts," such as found in large airports, intelligent. Travelers pick up carts at designated points but leave them arbitrary places. It is a considerable task to re-collect them. It is, therefore, desirable that intelligent carts (intelligent robots) draw themselves together automatically. Simple implementation may be making each cart has a designated assembly point, and when they are free, automatically return to those points. It is easy to implement, but some carts have to travel very long way back to their own assembly point, even though it is located close to some other assembly points. It consumes too much unnecessary energy so that the carts have to have expensive batteries. In order to ameliorate the situation, we employ mobile software agents to locate robots scattered in a field, e.g. an airport, and make them autonomously determine their moving behaviors by using a clustering algorithm based on the Ant Colony Optimization (ACO). ACO is the swarm intelligence-based methods, and a multi-agent system that exploit artificial stigmergy for the solution of combinatorial optimization problems. Preliminary experiments have provided a favorable result. In this paper, we focus on the implementation of the controlling mechanism of the multi-robots using the mobile agents.

Ant colony optimization for dynamic stability of laminated composite plates

  • Shafei, Erfan;Shirzad, Akbar
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.105-116
    • /
    • 2017
  • This paper presents the dynamic stability study of laminated composite plates with different force combinations and aspect ratios. Optimum non-diverging stacking is obtained for certain loading combination and aspect ratio. In addition, the stability force is maximized for a definite operating frequency. A dynamic version of the principle of virtual work for laminated composites is used to obtain force-frequency relation. Since dynamic stiffness governs the divergence or flutter, an efficient optimization method is necessary for the response functional and the relevant constraints. In this way, a model based on the ant colony optimization (ACO) algorithm is proposed to search for the proper stacking. The ACO algorithm is used since it treats with large number of dynamic stability parameters. Governing equations are formulated using classic laminate theory (CLT) and von-Karman plate technique. Load-frequency relations are explicitly obtained for fundamental and secondary flutter modes of simply supported composite plate with arbitrary aspect ratio, stacking and boundary load, which are used in optimization process. Obtained results are compared with the finite element method results for validity and accuracy convince. Results revealed that the optimum stacking with stable dynamic response and maximum critical load is in angle-ply mode with almost near-unidirectional fiber orientations for fundamental flutter mode. In addition, short plates behave better than long plates in combined axial-shear load case regarding stable oscillation. The interaction of uniaxial and shear forces intensifies the instability in long plates than short ones which needs low-angle layup orientations to provide required dynamic stiffness. However, a combination of angle-ply and cross-ply stacking with a near-square aspect ratio is appropriate for the composite plate regarding secondary flutter mode.