DOI QR코드

DOI QR Code

The Ant Algorithm Considering the Worst Path in Traveling Salesman problems

순회 외판원 문제에서 최악 경로를 고려한 개미 알고리즘

  • 이승관 (경희대학교 국제캠퍼스 학부대학) ;
  • 이대호 (경희대학교 국제캠퍼스 학부대학)
  • Published : 2008.12.30

Abstract

Ant algorithm is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, we propose the improved $AS_{rank}$ algorithms. The original $AS_{rank}$ algorithm accomplishes a pheromone updating about only the paths which will be composed of the optimal path is higher, but, the paths which will be composed the optimal path is lower does not considered. In this paper, The proposed method evaporate the pheromone of the paths which will be composed of the optimal path is lowest(worst tour path), it is reducing the probability of the edges selection during next search cycle. Simulation results of proposed method show lower average search time and average iteration than original ACS.

개미 알고리즘은 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법으로, 그리디 탐색뿐만 아니라 긍정적 피드백을 사용한 모집단에 근거한 접근법으로 순회 판매원 문제를 풀기 위해 처음으로 제안되었다. 본 논문은 개선된 $AS_{rank}$ 알고리즘을 제안한다. 기존 $AS_{rank}$ 알고리즘은 최적 경로로 구성될 가능성이 높은 경로에 대해서만 페로몬 갱신을 수행하고 최적 경로를 구성할 가능성이 낮은 경로에 대해서는 전혀 고려하지 않는다. 이것을 고려해 본 논문에서는 최적 경로로 구성될 가능성이 낮은 경로(에이전트들이 구성한 경로 중 최악 경로)에 대해 페로몬을 증발시켜 다음 탐색 과정에서 해당 경로 탐색을 줄이고자 하였다. 이를 통해 다음 사이클에서 에이전트들이 해당 간선의 선택 확률을 줄여줌으로써 기존 ACS 알고리즘에 비해 평균 탐색 시간과 평균 반복 횟수를 줄일 수 있음을 보여준다.

Keywords

References

  1. B. Freisleben and P. Merz, "Genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems," Proceedings of IEEE International Conference of Evolutionary Computation, IEEE-EC 96, IEEE Press, pp. 616-621, 1996
  2. B. Bullnheimer, R. F. Hartl, and C. Strauss. "A new rank-based version of the Ant System: A computational study," Central European Journal for Operations Research and Economics, 7(1): pp.25-38, 1999
  3. C. Blum, "Ant colony optimization: Introduction and recent trends", Physics of Life Reviews, 2(4), pp.353-373, 2005 https://doi.org/10.1016/j.plrev.2005.10.001
  4. L.M. Gambardella and M. Dorigo,"Ant Colony System: A Cooperative Learning approach to the Traveling Salesman Problem" IEEE Transactions on Evolutionary Computation, vol. 1, No. 1, 1997
  5. M. Dorigo, M. Birattari, T. Stutzle, "Ant Colony Optimization -- Artificial Ants as a Computational Intelligence Technique", IEEE Computational Intelligence Magazine, 2006
  6. M. Dorigo & T. Stutzle, "The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances", Handbook of Metaheuristics, 2002
  7. M. Dorigo & K. Socha, "An Introduction to Ant Colony Optimization", Approximation Algorithms and Metaheuristics, CRC Press, 2007
  8. M. Drigo, V.Maniezzo, and A.Colorni, "The ant system: optimization by a colony of cooperation agents," IEEE Transactions of Systems, Man, and Cybernetics-Part B, vol. 26, No. 2, pp. 29-41, 1996 https://doi.org/10.1109/3477.484436
  9. M. Dorigo & L.M. Gambardella. "Ant Colonies for the Traveling Salesman Problem". BioSystems, 43:73-81, 1997 https://doi.org/10.1016/S0303-2647(97)01708-5
  10. S. Lin and B.W. Kernighan, "An Effective Heuristic algorithm for the Traveling Salesman Problem," Bell Telephone Laboratories, Incorporated, Murray Hill, N.J. 1997
  11. http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib /tsplib.html