• Title/Summary/Keyword: Anodized aluminum oxide (AAO)

Search Result 23, Processing Time 0.024 seconds

Alumina Templates on Silicon Wafers with Hexagonally or Tetragonally Ordered Nanopore Arrays via Soft Lithography

  • Park, Man-Shik;Yu, Gui-Duk;Shin, Kyu-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.83-89
    • /
    • 2012
  • Due to the potential importance and usefulness, usage of highly ordered nanoporous anodized aluminum oxide can be broadened in industry, when highly ordered anodized aluminum oxide can be placed on a substrate with controlled thickness. Here we report a facile route to highly ordered nanoporous alumina with the thickness of hundreds-of-nanometer on a silicon wafer substrate. Hexagonally or tetragonally ordered nanoporous alumina could be prepared by way of thermal imprinting, dry etching, and anodization. Adoption of reusable polymer soft molds enabled the control of the thickness of the highly ordered porous alumina. It also increased reproducibility of imprinting process and reduced the expense for mold production and pattern generation. As nanoporous alumina templates are mechanically and thermally stable, we expect that the simple and costeffective fabrication through our method would be highly applicable in electronics industry.

Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

  • Kim, Byeol;Lee, Jin Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.349-352
    • /
    • 2014
  • Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i.e., meshed pore, was produced.

Performances and Electrical Properties of Vertically Aligned Nanorod Perovskite Solar Cell

  • Kwon, Hyeok-Chan;Kim, Areum;Lee, Hongseuk;Lee, Eunsong;Ma, Sunihl;Lee, Yung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.429-429
    • /
    • 2016
  • Organolead halide perovskite have attracted much attention over the past three years as the third generation photovoltaic due to simple fabrication process via solution process and their great photovoltaic properties. Many structures such as mesoporous scaffold, planar heterojunction or 1-D TiO2 or ZnO nanorod array structures have been studied to enhance performances. And the photovoltaic performances and carrier transport properties were studied depending on the cell structures and shape of perovskite film. For example, the perovskite cell based on TiO2/ZnO nanorod electron transport materials showed higher electron mobility than the mesoporous structured semiconductor layer due to 1-D direct pathway for electron transport. However, the reason for enhanced performance was not fully understood whether either the shape of perovskite or the structure of TiO2/ZnO nanorod scaffold play a dominant role. In this regard, for a clear understanding of the shape/structure of perovskite layer, we applied anodized aluminum oxide material which is good candidate as the inactive scaffold that does not influence the charge transport. We fabricated vertical one dimensional (1-D) nanostructured methylammonium lead mixed halide perovskite (CH3NH3PbI3-xClx) solar cell by infiltrating perovskite in the pore of anodized aluminum oxide (AAO). AAO template, one of the common nanostructured materials with one dimensional pore and controllable pore diameters, was successfully fabricated by anodizing and widening of the thermally evaporated Al film on the compact TiO2 layer. Using AAO as a scaffold for perovskite, we obtained 1-D shaped perovskite absorber, and over 15% photo conversion efficiency was obtained. I-V measurement, photoluminescence, impedance, and time-limited current collection were performed to determine vertically arrayed 1-D perovskite solar cells shaped in comparison with planar heterojunction and mesoporous alumina structured solar cells. Our findings lead to reveal the influence of the shape of perovskite layer on photoelectrical properties.

  • PDF

The formation of highly ordered nano pores in Anodic Aluminum Oxide

  • Im, Wan-soon;Cho, Kyung-Chul;Cho, You-suk;Park, Gyu-Seok;Kim, Dojin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.53-53
    • /
    • 2003
  • There has been increasing interest in the fabrication of nano-sized structures because of their various advantages and applications. Anodic Aluminum Oxide (AAO) is one of the most successful methods to obtain highly ordered nano pores and channels. Also It can be obtained diverse pore diameter, density and depth through the control of anodization condition. The three types of substrates were used for anodization; sheets of Aluminum on Si wafer and Aluminum on Mo-coated Si wafer. In Aluminum sheet, a highly ordered array of nanoholes was formed by the two step anodization in 0.3M oxalic acid solutions at 10$^{\circ}C$ After the anodization, the remained aluminum was removed in a saturated HgCl$_2$ solution. Subsequently, the barrier layer at the pore bottom was opened by chemical etching in phosphoric acid. Finally, we can obtain the through-channel membrane. In these processes, the effect of various parameters such as anodizing voltage, anodizing time, pore widening time and pre-heat treatment are characterized by FE-SEM (HITACH-4700). The pore size. density and growth rate of membrane are depended on the anodizing voltage and temperature respectively. The pore size is proportional to applied voltage and pore widening time The pore density can be controlled by anodizing temperature and voltage.

  • PDF

Tribological Characteristics of Anodized Al 6061 Under Deinoized Water Lubricated Reciprocating Condition (양극산화 알루미늄 합금6061의 초순수 물 윤활에서의 트라이볼로지적 특성)

  • Jeong, Junho;Cho, Minhaeng
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.59-64
    • /
    • 2017
  • This study investigates friction and wear characteristics of anodized aluminum (Al) alloy 6061 by using a reciprocating tribotester. The diameter and height of the specimen are 30 mm and 10 mm, respectively. The surface roughness of the mirrored-surface is approximately $0.01{\sim}0.02{\mu}m$, and it is used throughout the current study. As a result of anodizing, the depth and diameter of the nanopore are approximately $25{\mu}m$ and 30-40 nm, respectively. The testing conditions are as follows: loads of 1, 3, and 5 N; a frequency of 1 Hz; a stoke of 3 mm; and a duration of 1800 s. We use deionized water with a volume of approximately $25{\mu}l$, as the lubricant. Micro Vickers hardness measurements show that mirrored-surface specimens had lower hardness values than anodized specimens. Further, their coefficients of friction are lower than those of the anodized samples, and the width of their wear track increases with load, as expected. The anodized specimens' coefficients of friction increase with stable frictional behavior and exhibit insignificant load dependence. Further, we observe that the width of the wear track is less than that of the mirrored-surface specimens, and micro cracks are present near it. Moreover, the anodizing process increases the hardness of the samples, improving their wear resistance. These results indicate that nanoporous structures are not effective in lowering friction under the water-lubricated condition.

Observation of Corrosion Behavior with Aluminum 5052 Alloy by Modulating Anodization Time (양극산화 공정시간에 따른 알루미늄 5052 합금의 산화피막 성장 및 내식성 관찰)

  • Ji, HyeJeong;Choi, Dongjin;Jeong, Chanyoung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.67-67
    • /
    • 2018
  • The 5xxx series aluminum alloys are recently used in not only marine system but also automotive area because of a low density material, good mechanical properties and better resistance to corrosion. However, Aluminum alloys are less resistant than the purest aluminum such as 1xxx aluminum alloy. Electrochemical anodization technique has attracted in the area of surface treatment because of a simple procedure, a low-cost efficiency than other techniques such as lithography and a large volume of productivity, and so on. Here, The relationship between the corrosion behavior and the thickness of aluminum anodic oxide have been studied. Prior to anodization, The 5052 aluminum sheets ($30{\times}20{\times}1mm$) were degreased by ultra-sonication in acetone and ethanol for 10 minutes and eletropolished in a mixture of perchloric acid and ethanol (1:4, volume ratio) under an applied potential of 20V for 60 seconds to obtain a regular surface. During anodization process, Aluminum alloy was used as a working electrode and a platinum was used as a counter electrode. The two electrodes were separated at a distance of 5cm. The applied voltage of anodization is conducted at 40V in a 0.3M oxalic acid solution at $0^{\circ}C$ with appropriate magnetic stirring. The surface morphology and the thickness of AAO films was observed with a Scanning Electron Microscopy (SEM). The corrosion behavior of all samples was evaluated by an open-circuit potential and potentio-dynamic polarization test in 3.5wt% NaCl solution. Thus, The corrosion resistance of 5052 aluminum alloy is improved by the formation of an anodized oxide film as function of increase anodization time which artificially develops on the metal surface. The detailed electrochemical behavior of aluminum 5052 alloy will be discussed in view of the surface structures modified by anodization conditions such as applied voltages, concentration of electrolyte, and temperature of electrolyte.

  • PDF

Development of a Returnable Folding Plastic Box RFID Module for Agricultural Logistics using Energy Harvesting Technology (에너지 하베스팅 기술을 활용한 농산물 물류용 리턴어블 접이식 플라스틱 상자 RFID 모듈 개발)

  • Jong-Min Park;Hyun-Mo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.223-228
    • /
    • 2023
  • Sustainable energy supplies without the recharging and replacement of the charge storage device have become increasingly important. Among various energy harvesters, the triboelectric nanogenerator (TENG) has attracted considerable attention due to its high instantaneous output power, broad selection of available materials, eco-friendly and inexpensive fabrication process, and various working modes customized for target applications. In this study, the amount of voltage and current generated was measured by applying the PSD profile random vibration test of the electronic vibration tester and ISTA 3A according to the time of Anodized Aluminum Oxide (AAO) pore widening of the manufactured TENG device Teflon and AAO. The discharge and charging tests of the integrated module during the random simulated transport environment and the recognition distance of RFID were measured while agricultural products (onion) were loaded into the returnable folding plastic box. As a result, it was found that AAO alumina etching processing time to maximize TENG performance was optimal at 31 min in terms of voltage and current generation, and the integrated module applied with the TENG module showed a charging effect even during the continuous use of RFID, so the voltage was kept constant without discharge. In addition, the RFID recognition distance of the integrated module was measured as a maximum of 1.4 m. Therefore, it was found that the surface condition of AAO, a TENG element, has a great influence on the power generation of the integrated module, and due to the characteristics of TENG, the power generation increases as the surface dries, so it is judged that the power generation can be increased if the surface drying treatment (ozone treatment, etc.) of AAO is applied in the future.

Moisture Gettering by Porous Alumina Films on Textured Silicon Wafer (실리콘 표면에 증착된 다공성 알루미나의 수분 흡착 거동)

  • Lim, Hyo Ryoung;Eom, Nu Si A;Cho, Jeong-Ho;Choa, Yong-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.401-406
    • /
    • 2015
  • Getter is a class of materials used in absorbing gases such as hydrogen and moisture in microelectronics or semiconductor devices to operate properly. In this study, we developed a new device structure consisting of porous anodized alumina films on textured silicon wafer, which have cost efficiency in materials and processing aspects. Anodic aluminum oxide (AAO) with controlled pore sizes can be applied to a high-efficiency moisture absorber due to the high surface area and OH- saturated surface property. The moisture sorption capacity was 2.02% (RH=35%), obtained by analyzing isothermal adsorption/desorption curve.

A New Approach to Obtain Correct and Simplified Equation Applied to Inner Space Assessment for Capsule-like Superstructures

  • Jo, Jihee;Lim, Jong Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1835-1838
    • /
    • 2013
  • Polypyrrole-Gold (PPy/Au) segment nanowires are prepared using anodized aluminum oxide (AAO) templates and assembled into a curved superstructure. Since the shape of the obtained superstructures can be designed to be capsule-like with inner space for containing materials, and their openings and closures can be controlled with external stimuli, these structures can be useful for a large variety of applications. Inner space of capsule-like superstructures is an important factor for their applications, and the volume of the inner space can be assessed using the generalized equation suggested by J. K. Lim (Bull. Korean Chem. Soc. 33, 2699 (2012)). In this paper, we introduce a new approach to obtain correct and simplified equation without redundant assumption which was used to induce the previous equations, and recalculate the volume of the inner space in the capsule-like superstructure using a new equation.

Study on the narrowed nanopores of anodized aluminum oxide template by thin-film deposition using e-beam evaporation (전자빔 증발법 박막 증착을 이용한 양극 산화 알루미늄 템플릿의 나노 포어 가공 연구)

  • Lee, Seung-Hun;Lee, Minyoung;Kim, Chunjoong;Kim, Kwanoh;Yoon, Jae Sung;Yoo, Yeong-Eun;Kim, Jeong Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.25-29
    • /
    • 2021
  • The fabrication of nanopore membrane by deposition of Al2O3 film using electron-beam evaporation, which is fast, cost-effective, and negligible dependency on substance material, is investigated for potential applications in water purification and sensors. The decreased nanopore diameter owing to increased wall thickness is observed when Al2O3 film is deposited on anodic aluminum oxide membrane at higher deposition rate, although the evaporation process is generally known to induce a directional film deposition leading to the negligible change of pore diameter and wall thickness. This behavior can be attributed to the collision of evaporated Al2O3 particles by the decreased mean free path at higher deposition rate condition, resulting in the accumulation of Al2O3 materials on both the surface and the edge of the wall. The reduction of nanopore diameter by Al2O3 film deposition can be applied to the nanopore membrane fabrication with sub-100 nm pore diameter.