• Title/Summary/Keyword: Anodic aluminum oxide (AAO)

Search Result 129, Processing Time 0.027 seconds

Characteristic Analysis of Nano-hole Array Optical Filter having Psychological Protection for Color Recognition (색 인지에 대한 심리보호효과를 가지는 나노홀어레이 광학필터 특성 분석)

  • Kang, Tae Young;Ahn, Heesang;Shin, Dong-Myeong;Hong, Suck Won;Kim, Kyujung;Lee, Donghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.95-100
    • /
    • 2016
  • We suggest and simulate an optical filter that a red wavelength range cannot transmit to protect the psychological stress that originates from the cognition of red color in emergency medical technicians. When a nanohole hexagonal array is fabricated on gold film using Anodic Aluminum Oxide (AAO), the blocked wavelength can be tuned by the hole diameter and film thickness. The characteristic of the transmittance for normal incident white light is simulated with Finite Element Method (FEM) in the MATLAB platform. Although the transmittance of the overall wavelength is reduced by 50% by the gold film, the transmittance of the red wavelength range is decreased by over 87%.

Determination of Hydrogen Peroxide on Modified Glassy Carbon Electrode by Polytetrakis(2-aminophenyl)porphyrin Nanowire

  • Jeong, Hae-Sang;Kim, Song-Mi;Seol, Hee-Jin;You, Jung-Min;Jeong, Eun-Seon;Kim, Seul-Ki;Seol, Kyung-Sik;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2979-2983
    • /
    • 2009
  • Nanowires of polytetrakis(o-aminophenyl)porphyrin (PTAPPNW) were fabricated by electrochemical polymerization with the cyclic voltammetric method in anodic aluminum oxide (AAO) membranes. The glassy carbon electrode (GCE) modified by PTAPPNW, single-walled carbon nanotubes (SWNT) and Nafion as a binder was investigated with voltammetric methods in a phosphate buffer saline (PBS) solution at pH 7.4. The PTAPPNW + SWNT + Nafion/GCE exhibited strongly enhanced voltammetric and amperometric sensitivity towards hydrogen peroxide ($H_2O_2$), which shortened the response time and enhanced the sensitivity for $H_2O_2$ determination at an applied potential of 0.0 V by amperometric method. The PTAPPNW + SWNT + Nafion/GCE can be used to monitor $H_2O_2$ at very low concentrations in biological pH as an efficient electrochemical $H_2O_2$ sensor.

A Microfluidic Chip-Based Creatinine Filtration Device (마이크로 플루이딕 칩을 기반으로 한 크레아티닌 여과장치)

  • Lee, Sack;Shin, Dong-Gyu;Nguyen, Thanh Qua;Park, Woo-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.921-925
    • /
    • 2015
  • The number of people suffering from renal disease increases every year. One of the most common treatments (clinical care options) for renal diseases is hemodialysis. However it takes a long time and has a high cost. Therefore, the importance of artificial kidney research has risen. Filtering creatinine from blood is one of the prime renal functions. Thus, we designed a novel two channel microfluidic chip focused on that function. In order to bond the individual polydimethylsiloxane layers, we have developed a housing system using acrylic plastic frame. This method has significant advantages in changing filter membranes. We use anodic aluminum oxide for the filter membrane. We analyzed the difference in the absorbance values for various creatinine concentrations using the Jaffe reaction. For the purpose of acquiring a standard equation to quantify the creatinine concentration, we interpolated the measured data and confirmed the concentration of the filtered solution. Through this experiment, we determined how the filtration efficiency depended on the flow rate and creatinine concentration.

Tribological Characteristics of Anodized Al 6061 Under Deinoized Water Lubricated Reciprocating Condition (양극산화 알루미늄 합금6061의 초순수 물 윤활에서의 트라이볼로지적 특성)

  • Jeong, Junho;Cho, Minhaeng
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.59-64
    • /
    • 2017
  • This study investigates friction and wear characteristics of anodized aluminum (Al) alloy 6061 by using a reciprocating tribotester. The diameter and height of the specimen are 30 mm and 10 mm, respectively. The surface roughness of the mirrored-surface is approximately $0.01{\sim}0.02{\mu}m$, and it is used throughout the current study. As a result of anodizing, the depth and diameter of the nanopore are approximately $25{\mu}m$ and 30-40 nm, respectively. The testing conditions are as follows: loads of 1, 3, and 5 N; a frequency of 1 Hz; a stoke of 3 mm; and a duration of 1800 s. We use deionized water with a volume of approximately $25{\mu}l$, as the lubricant. Micro Vickers hardness measurements show that mirrored-surface specimens had lower hardness values than anodized specimens. Further, their coefficients of friction are lower than those of the anodized samples, and the width of their wear track increases with load, as expected. The anodized specimens' coefficients of friction increase with stable frictional behavior and exhibit insignificant load dependence. Further, we observe that the width of the wear track is less than that of the mirrored-surface specimens, and micro cracks are present near it. Moreover, the anodizing process increases the hardness of the samples, improving their wear resistance. These results indicate that nanoporous structures are not effective in lowering friction under the water-lubricated condition.

SiGe Nanostructure Fabrication Using Selective Epitaxial Growth and Self-Assembled Nanotemplates

  • Park, Sang-Joon;Lee, Heung-Soon;Hwang, In-Chan;Son, Jong-Yeog;Kim, Hyung-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.24.2-24.2
    • /
    • 2009
  • Nanostuctures such as nanodot and nanowire have been extensively studied as building blocks for nanoscale devices. However, the direct growth of the nanostuctures at the desired position is one of the most important requirements for realization of the practical devices with high integrity. Self-assembled nanotemplate is one of viable methods to produce highly-ordered nanostructures because it exhibits the highly ordered nanometer-sized pattern without resorting to lithography techniques. And selective epitaxial growth (SEG) can be a proper method for nanostructure fabrication because selective growth on the patterned openings obtained from nanotemplate can be a proper direction to achieve high level of control and reproducibility of nanostructucture fabrication. Especially, SiGe has led to the development of semiconductor devices in which the band structure is varied by the composition and strain distribution, and nanostructures of SiGe has represented new class of devices such nanowire metal-oxide-semiconductor field-effect transistors and photovoltaics. So, in this study, various shaped SiGe nanostructures were selectively grown on Si substrate through ultrahigh vacuum chemical vapor deposition (UHV-CVD) of SiGe on the hexagonally arranged Si openings obtained using nanotemplates. We adopted two types of nanotemplates in this study; anodic aluminum oxide (AAO) and diblock copolymer of PS-b-PMMA. Well ordered and various shaped nanostructure of SiGe, nanodots and nanowire, were fabricated on Si openings by combining SEG of SiGe to self-assembled nanotemplates. Nanostructure fabrication method adopted in this study will open up the easy way to produce the integrated nanoelectronic device arrays using the well ordered nano-building blocks obtained from the combination of SEG and self-assembled nanotemplates.

  • PDF

Electrochemical Synthesis of Dumbbell-like Au-Ni-Au Nanorods and Their Surface Plasmon Resonance

  • Park, Yeon Ju;Liu, Lichun;Yoo, Sang-Hoon;Park, Sungho
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.57-62
    • /
    • 2012
  • In this report, we demonstrate that the longitudinal localized surface plasmon resonance mode can be suppressed when the nanorods were in dumbbell shape. The seed nanorods were synthesized by electrochemical deposition of metals into the pores of anodic aluminum oxide templates. The dumbbell-like nanorods were grown from seed Au-Ni-Au nanorods by a rate-controlled seed-mediated growth strategy. The selective deposition of Au atoms onto Au blocks of Au-Ni-Au nanorods produced larger diameter of Au nanorods with bumpy surface resulting in dumbbell-like nanorods. The morphology of nanorods depended on the reduction rate of $AuCl_4^-$, slow rate producing smooth surface of Au nanorods, but high reduction rate producing bumpy surface morphology. Through systematic investigation into the UV-Vis-NIR spectroscopy, we found that the multiple localized surface plasmon resonance (LSPR) modes were available from single-component Au nanorods. And, their LSPR modes of Au NRs with bumpy surface, compared to the smooth seed Au NRs, were red-shifted, which was obviously attributed to the increased electron oscillation pathways. While the longitudinal LSPR modes of smoothly grown Au NRs were blue-shifted except for a dipole transverse LSPR mode, which can be interpreted by decreased aspect ratio. In addition, dumbbell-like nanorods showed an almost disappeared longitudinal LSPR mode. It reflects that the plasmonic properties can be engineered using complex nanorods structure.

Facile Synthesis of Pt Nanoparticle and Graphene Composite Materials: Comparison of Electrocatalytic Activity with Analogous CNT Composite

  • Lee, Jihye;Jang, Ho Young;Jung, Insub;Yoon, Yeoheung;Jang, Hee-Jeong;Lee, Hyoyoung;Park, Sungho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1973-1978
    • /
    • 2014
  • Here, we present a facile method to synthesize Pt nanoparticles (NPs) and graphene composite materials (Pt/G) via vacuum filtration. Anodic aluminum oxide (AAO) templates were used to separate Pt/G composite and liquid phase. This method can be used to easily tune the mass ratio of Pt NPs and graphene. Pt NPs, graphene, and carbon nanotubes (CNTs) as building blocks were characterized by a variety of techniques such as scanning electron microscopy, UV-Vis spectroscopy, and Raman spectroscopy. We compared the electrocatalytic activities of Pt/G with Pt NP and CNT films (Pt/CNT) by cyclic voltammetry (CV), CO oxidation, and methanol oxidation. Pt/G was much more stable than pure Pt films. Also, Pt/G had better electrochemical activity, CO tolerance and methanol oxidation than Pt/CNT loaded with the same amount of Pt NPs due to the better dispersion of Pt NPs on graphene flakes without aggregation. We further synthesized Au@Pt disk/G and Pt nanorods/G to determine if our synthetic method can be applied to other NP shapes such as nanodisks and nanorods, for further electrocatalysis studies.

Applications and Preparation of Nanostructured Polymer Films by Using a Porous Alumina Template (다공성 알루미나 템플레이트를 이용한 고분자 나노 구조 필름의 제조 및 응용)

  • Lee, Joon Ho;Choi, Jin Kyu;Ahn, Myung-Su;Park, Eun Joo;Sung, Sang Do;Lee, Han-sub;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.586-592
    • /
    • 2009
  • The preparation of structures with nanosized arrays allows mimicking many different morphologies that exist in nature. In addition, polymer is considered as a material that can be easily applicable to the fabrication of nanostructures and can effectively exhibit nanosize effects since material, synthesis and processing cost is low, and many of polymer structures are well studied. Porous alumina template prepared by anodization of aluminum among nanofabrication methods is the one of promising routes that cost-effectively provides very regularly arrayed nanostructures. In this review, we describe the fabrication of the nanotemplate and template-based polymer nanostructures and their applications.

Variation of the Magnetic Properties of Electrodeposited CoP Nanowire Arrays According to Their Size and Microstructure (CoP나노선재의 자기적 성질에 미치는 미세구조와 크기 효과)

  • Kim, Yi J.;Lee, Kwan H.;Jeung, Won Y.;Kim, Kwang B.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.208-211
    • /
    • 2003
  • We have investigated the dimensional and microstructural dependence of magnetic properties of CoP nano-wire arrays fabricated by electrodeposition on AAO(anodic aluminum oxide) templates with different-size nanopores. Our results indicate that the magnetic properties of nanowire arrays can be varied with their dimensions and microstructures. As for the CoP nanowire arrays with the diameter of 20nm, it was found to have the coercivity more than 2.6kOe due to the shape anisotropy and squareness(Mr/Ms) of $\~0.8$. The CoP nanowire arrays with the diameter of 200m, however, showed very different magnetic properties depending on the current densities. Nanowires fabricated at $5mA/cm^2$ had stronger tendency to have the preferred crystallographic orientation of (002) parallel to the nanowire than those fabricated at $35mA/cm^2$ These microstructural differences are the reason why CoP nanowire arrays prepared at different current densities exhibited different magnetic properties.