• Title/Summary/Keyword: Anodic Aluminum Oxide

Search Result 212, Processing Time 0.024 seconds

Investigation of Cell Behavior on Nanoporous Surface (나노기공 표면에서의 세포 행동양식에 관한 연구)

  • Chung, Sung-Hee;Yoon, Won-Jung;Min, Jun-Hong
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • In this paper, we investigated the effect of nanostructure on the cell behaviors such as adhesion and growth rate. Nanoporous structures with various diameters (30, 40, 45, 50, 60 nm) and 500 nm of the depth were fabricated using the anodizing method. The water contact angle of the surface consisting of nanopores with 30 nm diameter was 40 degree and those were 60~70 degree in cases of nanopores with over 40 nm diameter. Hela cells were cultivated on various nanoporous structure surface to investigate the cell behavior on nanostructure. As a result, Hela cells preferred 30 nm diameter nanoporous surface that has lower water contact angle. This result was confirmed by protein adsorption experiment and scanning electron microscope investigation.

실리콘 기판위의 증착된 AAO Barrier Layer의 $Cl_2/BCl_3$ Neutral Beam Etching

  • Kim, Chan-Gyu;Min, Gyeong-Seok;O, Jong-Sik;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.135-136
    • /
    • 2011
  • 본 연구에서는 실리콘 기판위의 형성된 AAO (Anodic Aluminum Oxide)의 barrier layer를 $Cl_2/BCl_3$ gas mixture에서 Neutral Beam Etching (NBE)과 Ion Beam Etching (IBE)로 각각 식각한 후 그 결과를 비교하였다. 이온빔의 경우 나노사이즈의 AAO pore의 charging에 의해 pore 아래쪽의 위치한 barrier layer를 어떤 식각조건에서도 제거하지 못하였다. 하지만, charging effect가 없고, 높은 중성화율을 나타내는 low angle forward reflected 방식의 neutral beam etching (NBE)에서는 $BCl_3$-rich $Cl_2/BCl_3$ gas mixture인 식각조건에서 AAO pore에 휘발성 $BO_xCl_y$를 형성하면서 barrier layer를 제거할 수 있었다.

  • PDF

Fabrication of nanomaterials using an Anodic Aluminum Oxide(AAO) thin film and their properties (AAO template를 이용한 나노 구조의 제조와 특성)

  • Yu, Hyun-Min;Lee, Jae-Hyung;Lee, Jong-In;Jung, Hak-Ki;Jung, Dong-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.814-817
    • /
    • 2010
  • AAO thin films prepared by a two-step anodization process have pores that are uniform in diameter, highly ordered, and perfectly vertical with respect to the plane of the nano template. Further, the pore size and interpore distance can be easily controlled by varying the anodizing voltage and acid electrolyte. When metals are electrochemically deposited in the pores, metal nanowires that are highly ordered and uniform in diameter are formed in each pore.

  • PDF

Plasma Corrosion and Breakdown Voltage Behavior of Ce Ion Added Sulfuric Acid Anodizing According to Electrolyte Temperature (Ce ion이 첨가된 황산 아노다이징의 온도 변화에 따른 내플라즈마 특성)

  • So, Jongho;Yun, Ju-Young;Shin, Jae-Soo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.37-41
    • /
    • 2021
  • We report on the formation of anodic aluminum oxide (AAO) film using sulfuric acid containing cerium salt. When the temperature of the sulfuric acid containing cerium salt changes from 5 ℃ to 20 ℃, the current density and the thickness growth rate increase. The surface morphology of the AAO film change according to the temperature of the electrolytes. And that affected the breakdown voltage and the plasma etch rate. The breakdown voltage per unit thickness was the highest at 15 ℃, and the plasma etch rate was the lowest at 10 ℃ at 2.80 ㎛/h.

Evaluation of Durability for Al Alloy with Anodizing Condition (알루미늄 합금의 양극산화 조건에 따른 내구성 평가)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.152-152
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. It is a technique to develop metals for various uses, and extensive research on the commercial use has been performed for a long time. Aluminum anodic oxide (AAO) is generate oxide films, whose sizes and characteristics depending on the types of electrolytes, voltages, temperatures and time. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. The sulfuric acid was used as an anodizing electrolyte, controlling its temperature to $10^{\circ}C$. The anode was 5083 Al alloy with dimension of $5(t){\times}20{\times}20mm$ while the cathode was the platinum. The distance between the anode and the cathode was maintained at 3 cm. Agitation was introduced by magnetic stirrer at 300 rpm to prevent localized temperature rise that hinders stable growth of oxide layer. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition for $10^{\circ}C$, 10 vol.%, respectively. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant rate. In addition, using galvanostatic method, it was maintained at current density of $10{\sim}30mA/cm^2$ for 40 minutes. The cavitation experiment was carried out with an ultrasonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1 mm. The specimen after the experiment was cleaned in an ultrasonic, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the investigation, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with applied current density.

  • PDF

Surface Treatment Effect on Electrochemical characteristics of Al Alloy for ship

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.149-149
    • /
    • 2017
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the seawater upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification showed a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Improvement of Electrical Properties by Controlling Nickel Plating Temperatures for All Solid Alumina Capacitors

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • Recently, thin film capacitors used for vehicle inverters are small size, high capacitance, fast response, and large capacitance. But its applications were made up of liquid as electrolyte, so its capacitors are limited to low operating temperature range and the polarity. This research proposes using Ni-P alloys by electroless plating as the electrode instead of liquid electrode. Our substrate has a high aspect ratio and complicated shape because of anodic aluminum oxide (AAO). We used AAO because film thickness and effective surface area are depended on for high capacitance. As the metal electrode instead of electrolyte is injected into AAO, the film capacitor has advantages high voltage, wide operating temperature, and excellent frequency property. However, thin film capacitor made by electroless-plated Ni on AAO for full-filling into etched tunnel was limited from optimizing the deposition process so as to prevent open-through pore structures at the electroless plating owing to complicated morphological structure. In this paper, the electroless plating parameters are controlled by temperature in electroless Ni plating for reducing reaction rate. The Electrical properties with I-V and capacitance density were measured. By using nickel electrode, the capacitance density for the etched and Ni electroless plated films was 100 nFcm-2 while that for a film without any etch tunnel was 12.5 nFcm-2. Breakdown voltage and leakage current are improved, as the properties of metal deposition by electroless plating. The synthesized final nanostructures were characterized by scanning electron microscopy (SEM).

  • PDF

Fabrication of Environmental-friendly Materials Using Atomic Layer Deposition (원자층 증착을 이용한 친환경 소재의 제조)

  • Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this article, I will introduce recent developments of environmental-friendly materials fabricated using atomic layer deposition (ALD). Advantages of ALD include fine control of the thin film thickness and formation of a homogeneous thin fim on complex-structured three-dimensional substrates. Such advantages of ALD can be exploited for fabricating environmental-friendly materials. Porous membranes such as anodic aluminum oxide (AAO) can be used as a substrate for $TiO_2$ coating with a thickness of about 10 nm, and the $TiO_2$-coated AAO can be used as filter of volatile organic compound such as toluene. The unique structural property of AAO in combination with a high adsorption capacity of amorphous $TiO_2$ can be exploited in this case. $TiO_2$ can be also deposited on nanodiamonds and Ni powder, which can be used as photocatalyst for degradation of toluene, and $CO_2$ reforming of methane catalyst, respectively. One can produce structures, in which the substrates are only partially covered by $TiO_2$ domains, and these structures turns out to be catalytically more active than bare substrates, or complete core-shell structures. We show that the ALD can be widely used not only in the semiconductor industry, but also environmental science.

Plasma Electrolytic Oxidation in Surface Modification of Metals for Electronics

  • Sharma, Mukesh Kumar;Jang, Youngjoo;Kim, Jongmin;Kim, Hyungtae;Jung, Jae Pil
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • This paper presents a brief summary on a relatively new plasma aided electrolytic surface treatment process for light metals. A brief discussion regarding the advantages, principle, process parameters and applications of this process is discussed. The process owes its origin to Sluginov who discovered an arc discharge phenomenon in electrolysis in 1880. A similar process was studied and developed by Markov and coworkers in 1970s who successfully deposited an oxide film on aluminium. Several investigation thereafter lead to the establishment of suitable process parameters for deposition of a crystalline oxide film of more than $100{\mu}m$ thickness on the surface of light metals such as aluminium, titanium and magnesium. This process nowadays goes by several names such as plasma electrolytic oxidation (PEO), micro-arc oxidation (MOA), anodic spark deposition (ASD) etc. Several startups and surface treatment companies have taken up the process and deployed it successfully in a range of products, from military grade rifles to common off road sprockets. However, there are certain limitations to this technology such as the formation of an outer porous oxide layer, especially in case of magnesium which displays a Piling Bedworth ratio of less than one and thus an inherent non protective oxide. This can be treated further but adds to the cost of the process. Overall, it can be said the PEO process offers a better solution than the conventional coating processes. It offers advantages considering the fact that he electrolyte used in PEO process is environmental friendly and the temperature control is not as strict as in case of other surface treatment processes.

Effects of Addition of Sulfuric Acid on the Etching Behavior of Al foil for Electrolytic Capacitors II. Microstructures of Dielectric Layers and AC Impedance Analysis (전해 콘텐사용 알루미늄박의 애칭특성에 미치는 황산첨가의 영향 II. 유전층의 조직 및 임피던스 분석)

  • Kim, Seong-Gap;Yu, In-Jong;Sin, Dong-Cheol;O, Han-Jun;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.375-381
    • /
    • 2000
  • Aluminium foil for electrolytic capacitors was anodized at the voltage of 100V and 140V for 10 minutes in ammonium adipate solution to form aluminum oxide layer on aluminum substrate as an dielectric film. The thickness, the stoichiometry and the crystal structure of the layer were investigated by using RBS and TEM . In addition EIS technique was employed to study the effects of addition of sulfuric acid on the increment of the foil surface area. It was found that the thickness values of the layers anodized at 100V and 140V were about 130 nm and 190 nm respectively and the stoichiometry of the elements of aluminum and oxygen was 2:3. The anodic oxide layer was shown to be amorphous. but the structure irradiated with electron beam resulted in the transformation into crystalline structure of $${\gamma}$-Al_2$$O_3$ . From a comparison of the impedance results and the capacitance variation to investigate the ef- fects of sulfuric acid addition to the etching bath of hydrochloric acid, the EIS techinque could be useful to analyze the capacitance variation.

  • PDF