• Title/Summary/Keyword: Annular flow

Search Result 348, Processing Time 0.025 seconds

The Experimental Study of Supersonic, Dual, Coaxial, Free, Jets (환형동축 초음속 자유 제트유동에 관한 실험적 연구)

  • Lee, K.H.;Lee, J.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.323-328
    • /
    • 2001
  • Supersonic coaxial, axisymmetric, jets issuing from various kinds of dual coaxial nozzles were experimentally investigated. Four different kinds of coaxial, dual nozzles were employed to characterize the major features of the supersonic, coaxial, dual jets. Two convergent-divergent supersonic nozzles with an impinging angle in the jet axis of the annular jets were designed to have the Mach number 2.0 and used to compare the coaxial jet flows with those discharging from two sonic nozzles. The primary pressure ratio was changed in the range from 4.0 to 10.0 and the assistant jet ratio from 1.0 to 4.0. The results obtained show that the assistant jets from the annular nozzle affect the coaxial jet flows and an increase of both the primary jet pressure ratio and assistant jet pressure ratio produces longer supersonic length of the dual, coaxial jet.

  • PDF

OPTIMAL HOMOTOPY ASYMPTOTIC METHOD SOLUTION OF UNSTEADY SECOND GRADE FLUID IN WIRE COATING ANALYSIS

  • Shah, Rehan Ali;Islam, S.;Siddiqui, A.M.;Haroon, T.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.201-222
    • /
    • 2011
  • In the present work, the mathematical model of wire coating in a straight annular die is developed for unsteady second grade fluid in the form of partial differential equation. The Optimal Homotopy Asymptotic Method (OHAM) is applied for obtaining the solution of the model problem. This method provides us a suitable way to control the convergence of the series solution using the auxiliary constants which are optimally determined.

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

CFD ANALYSIS OF FLOW CHANNEL BLOCKAGE IN DUAL-COOLED FUEL FOR PRESSURIZED WATER REACTOR (가압경수로 이중냉각핵연료의 내측수로 막힘에 대한 전산유체역학 해석)

  • In, W.K.;Shin, C.B.;Park, J.Y.;Oh, D.S.;Lee, C.Y.;Chun, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.269-274
    • /
    • 2011
  • A CFD analysis was performed to examine the inner channel blockage of dual-cooled fuel which has being developed for the power uprate of a pressurized water reactor (PWR). The dual-cooled fuel consists of an annular fuel pellet($UO_2$) and dual claddings as well as internal and external cooling channels. The dual-cooled annular fuel is different from a conventional solid 려el by employing an internal cooling channel for each fuel pellet as well as an external cooling channel. One of the key issues is the hypothetical event of inner channel blockage because the inner channel is an isolated flow channel without the coolant mixing between the neighboring flow channels. The inner channel blockage could cause the Departure from Nucleate Boiling (DNB) in the inner channel that eventually causes a fuel failure. This paper presents the CFD simulation of the flow through the side holes of the bottom end plug for the complete entrance blockage of the inner channel. Since the amount of coolant supply to the inner channel depends on largely the pressure loss at the side hole, the pressure loss coefficient of the side hole was estimated by the CFD analysis. The CFD prediction of the loss coefficient showed a reasonable agreement with an experimental data for the complete blockage of both the inner channel entrance and the outer channel. The CFD predictions also showed the decrease of the loss coefficient as the outer channel blockage increases.

  • PDF

Examination of Forced Convection Heat Transfer Performance of a Twist-Vane Spacer Grid for a Dual-Cooled Annular Fuel Assembly (이중냉각 환형핵연료 집합체를 위한 비틀림 혼합날개 지지격자의 강제대류열전달 성능 검토)

  • Lee, Chi Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.53-62
    • /
    • 2017
  • The forced convection heat transfer performance of a twist-vane spacer grid for a dual-cooled annular fuel assembly was examined experimentally. The twist-vane spacer grid was uniquely designed to enhance mixing inside subchannels and mixing between adjacent subchannels. For testing, a $4{\times}4$ square-arrayed rod bundle with narrow gaps between rods was prepared as the dual-cooled annular fuel assembly to be simulated. The pitch-to-rod diameter ratio of simulated dual-cooled annular fuel assembly was 1.08. The experiments were performed under the following conditions: axial bulk velocity, 1.5 m/s and heat flux, $26kW/m^2$. With regard to the circumferential temperature distribution, the lowest rod-wall temperatures upstream and downstream were measured at the subchannel center and the position toward the tip of twist-vane, respectively. With regard to the axial temperature distribution, behind the twist-vane spacer grid, the rod-wall temperature decreased drastically, and the Nusselt number was enhanced by up to 56 %. The present measured data indicate that the twist-vane spacer grid can effectively improve the forced convection heat transfer in the dual-cooled annular fuel assembly with narrow gaps.

Prediction on The Base Pressure for An Axisymmetric Body (선대칭 형태에 있어서의 베이스 압력의 예측)

  • Baik, Doo-Sung;Han, Young-Chool
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.491-496
    • /
    • 2000
  • The physics of the flow field surrounding an engine nacelle afterbody is very complex. A high pressure jet from the nozzle interacts with the external flow and causes upstream influence on the afterbody surface field. At certain conditions, the nozzle boundary layer can separate, either by shock wave interaction or by adverse pressure gradient effect, resulting in a severe drag penalty. Furthermore, a finite afterbody base implies a recirculating flow region. A flow modeling method has been developed to analyze the flow in the annular base(rear-facing surface) of a circular engine nacelle flying at subsonic speed but with a supersonic exhause jet. Real values of exhaust gas properties and temperature are included.

  • PDF

An Experimental Study on the Two-Phase Natural Circulation Flow through an Annular Gap between Reactor Vessel and Insulation under External Vessel Cooling (원자로용기 외벽냉각시 용기와 단열재 사이의 자연순환 이상유동에 관한 실험적 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Kim, Hwan-Yeol;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1897-1902
    • /
    • 2003
  • An 1/21.6 scaled experimental facility was prepared utilizing the results of a scaling analysis to simulate the APRI400 reactor and insulation system. The behaviors of the boiling-induced two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the wall heat flux, upper exit slot area and configuration. And non-heating experiments have also been performed and discussed to certify the hydraulic similarity of the heating experiments by injecting air equivalent to the steam generated in the heating experimental condition.

  • PDF

Solid-liquid two phase helica l flow in a Rotating Annulus (Slim hole 환형관내 고-액 2상 유동에 관한 연구)

  • Han, Sang-Mok;Woo, Nam-Sub;Hwang, Young-Kyu;Kim, Young-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.369-372
    • /
    • 2008
  • An experimental study is carried out to study two-phase vertically upward hydraulic transport of solid particles by water in a vertical and inclined (0${\sim}$60 degree) concentric annulus with rotation of the inner cylinder. Rheology of particulate suspensions in shear-thinning fluids is of importance in many applications such as particle removal from surfaces, transport of proppants in fractured reservoir and cleaning of drilling holes, and so on. Annular fluid velocities varied from 0.2 m/s to 1.5 m/s for the actual drilling operational condition. Macroscopic behavior of solid particles, averaged flow rate, and particle rising velocity are observed. Main parameters considered in this study were radius ratio, inner-pipe rotary speed, fluid flow regime, and particle injection rate. For both water and CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become

  • PDF

Characteristics of flow-induced vibration for inner assembly of in-pile test section (노내시험부 내부집합체에 대한 유체유발진동특성)

  • Lee, Han-Hee;Lee, Jong-Min;Lee, Chung-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.250-253
    • /
    • 2006
  • The in-pile Section (IPS) is subjected to flow-induced vibration(FIV) due to the flow of the primary coolant and then the structural integrity. The in-pile Section (IPS) of 3-pin Fuel Test Loop(FTL) shall be installed in the vortical hole call IR1 of HANARO reactor core. In order to verify the velocity and displacement both the inside region of IPS at the annular region of IPS, the vibration was measured by varing the flow rate on both regions. The displacements of fuel assembly in the in-pile Section (IPS) were found to be lower than the values of allowable design criteria.

  • PDF

A Study on Prediction of the Base Pressures for an Axi-Symmetric Body

  • Baik, Doo-Sung;Han, Young-Chool
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1423-1433
    • /
    • 2001
  • A flow modeling method has been developed to analyze the flow in the annular base (rear- facing surface) of a circular engine nacelle flying at subsonic speed but with a supersonic exhaust jet. Real values of exhaust gas properties and temperature at an altitude of 30, 000 feet are employed. Potential flows of the air and gas streams are computed for the flow past a separated wake. Then a viscous jet mixing is superimposed on this inviscid solution. Conserva- tion of mass, momentum and energy for the wake flow field is achieved by multiple iterations with modest computer requirements.

  • PDF