DOI QR코드

DOI QR Code

Examination of Forced Convection Heat Transfer Performance of a Twist-Vane Spacer Grid for a Dual-Cooled Annular Fuel Assembly

이중냉각 환형핵연료 집합체를 위한 비틀림 혼합날개 지지격자의 강제대류열전달 성능 검토

  • Lee, Chi Young (Dept. of Fire Protection Engineering, Pukyong Nat'l Univ.)
  • Received : 2016.06.08
  • Accepted : 2016.11.06
  • Published : 2017.01.01

Abstract

The forced convection heat transfer performance of a twist-vane spacer grid for a dual-cooled annular fuel assembly was examined experimentally. The twist-vane spacer grid was uniquely designed to enhance mixing inside subchannels and mixing between adjacent subchannels. For testing, a $4{\times}4$ square-arrayed rod bundle with narrow gaps between rods was prepared as the dual-cooled annular fuel assembly to be simulated. The pitch-to-rod diameter ratio of simulated dual-cooled annular fuel assembly was 1.08. The experiments were performed under the following conditions: axial bulk velocity, 1.5 m/s and heat flux, $26kW/m^2$. With regard to the circumferential temperature distribution, the lowest rod-wall temperatures upstream and downstream were measured at the subchannel center and the position toward the tip of twist-vane, respectively. With regard to the axial temperature distribution, behind the twist-vane spacer grid, the rod-wall temperature decreased drastically, and the Nusselt number was enhanced by up to 56 %. The present measured data indicate that the twist-vane spacer grid can effectively improve the forced convection heat transfer in the dual-cooled annular fuel assembly with narrow gaps.

이중냉각 환형핵연료 집합체를 위한 비틀림 혼합날개 지지격자의 강제대류열전달 성능을 실험적으로 평가하였다. 비틀림 혼합날개 지지격자는 부수로 간 혼합뿐 아니라 부수로 내 혼합을 동시에 증대시킬 수 있도록 설계되었다. 실험을 위한 이중냉각 환형핵연료 모의 집합체로, 봉 중심 간 거리와 봉 외경의 비가 1.08인 봉 간격이 좁은 $4{\times}4$ 정사각 배열의 봉다발을 준비하였다. 실험은 봉다발 유동의 축방향 평균속도가 1.5 m/s, 열유속은 $26kW/m^2$인 조건에서 수행하였다. 원주방향 온도 분포의 경우, 지지격자 상류에서는 부수로 중심 벽면에서, 하류에서는 비틀림 혼합날개 끝이 향하는 벽면에서 온도가 가장 낮게 나타났다. 축방향 온도 분포의 경우, 지지격자 하류 근처에서 온도가 급격하게 감소하는 것으로 측정되었고, 비틀림 혼합날개에 의해 누셀트 수는 최대 56 % 증대되는 것으로 나타났다. 본 실험결과를 토대로 봉 간격이 좁은 이중냉각 환형핵연료 집합체에서 비틀림 혼합날개 지지격자에 의해 강제대류열 전달 성능이 효과적으로 증대될 수 있음을 확인하였다.

Keywords

References

  1. Chun, T. H., Shin, C. H., In, W. K., Lee, K. H., Park, S. Y., Kim, H. T., Bae, K. H. and Song, K.W., 2009, "A Potential of Dual-cooled Annular Fuel for OPR-1000 Power Uprate," Proceedings of 2009 LWR Fuel Performance, Paris, France, Paper 2185.
  2. In, W. K., Shin, C. H., Oh, D. S. and Chun, T. H., 2010, "Thermal-hydraulic and Thermomechanical Assessment of Dual-cooled Annular Fuel for the OPR-1000 Application," Proceedings of 2010 LWR Fuel Performance, Orlando, FL, USA, Paper 031.
  3. Lee, C. Y., Shin, C. H., Park, J. Y. and In, W. K., 2012, "Experimental Study on Pressure Loss of Flow Parallel to Rod Bundle with Spacer Grid," Transactions of the Korean Society of Mechanical Engineers B, Vol. 36, No. 7, pp. 689-695. https://doi.org/10.3795/KSME-B.2012.36.7.689
  4. Shen, Y. F., Cao, Z. D. and Liu, Q. G., 1991, "An Investigation of Crossflow Mixing Effect Caused by Grid Spacer with Mixing Blades in a Rod Bundle," Nuclear Engineering and Design, Vol. 125, pp. 111-119. https://doi.org/10.1016/0029-5493(91)90071-O
  5. Yang, S. K. and Chung, M. K., 1996, "Spacer Grid Effects on Turbulent Flow in Rod Bundles," Journal of the Korean Nuclear Society, Vol. 28, pp. 56-71.
  6. McClusky, H. L., Holloway, M. V., Beasley, D. E. and Conner, M. E., 2002, "Development of Swirling Flow in a Rod Bundle Subchannel," Journal of Fluids Engineering, Vol. 124, pp. 747-755. https://doi.org/10.1115/1.1478066
  7. McClusky, H. L., Holloway, M. V., Conover, T. A., Beasley, D. E., Conner M. E. and Smith, L. D., 2003, "Mapping of the Lateral Flow Field in Typical Subchannels of a Support Grid with Vanes," Journal of Fluids Engineering, Vol. 125, pp. 987-996. https://doi.org/10.1115/1.1625688
  8. Holloway, M. V., McClusky, H. L., Beasley, D. E. and Conner, M. E., 2004, "The Effect of Support Grid Features on Local, Single-phase Heat Transfer Measurements in Rod Bundles," Journal of Heat Transfer, Vol. 126, pp. 43-53. https://doi.org/10.1115/1.1643091
  9. Holloway, M. V., Conover, T. A., McClusky, H. L., Beasley, D. E. and Conner, M. E., 2005, "The Effect of Support Grid Design on Azimuthal Variation in Heat Transfer Coefficient for Rod Bundles," Journal of Heat Transfer, Vol. 127, pp. 598-605. https://doi.org/10.1115/1.1863274
  10. Conner, M. E., Smith III, L. D., Holloway, M. V. and Beasley, D. E., 2005, "Heat Transfer Coefficient Testing in Nuclear Fuel Bundles with Mixing Vane Grids," 2005 Water Fuel Performance Mtg., Kyoto, Japan.
  11. In, W. K., Kang, H. S., Yoon, K. H., Jung, Y. H., Kim, H. H., Oh, D. S., Chun, T. H. and Song, K. N. (KAERI), 2008, "Twisted Deflector for Enhancing Coolant Mixing in a Nuclear Fuel Assembly," EP 1139348.
  12. In, W. K., Oh, D. S., Lee, C. Y., Kwak, Y. K., Shin, C. H., Chun, T. H., Park, J. Y., Hwang, D. H., Kwon, H. and Kim, S. J., 2015, "Nuclear Fuel Thermal-Hydraulic Technology Development," KAERI/RR-3922/2014.
  13. In, W. K., Shin, C. H. and Lee, C. Y., 2014, "Experimental Observation of Forced Flow Mixing in Tight-lattice Rod Bundle," Trans. ANS, Reno, Nevada, USA, 662-664.
  14. In, W. K., Shin, C. H. and Lee, C. Y., 2015, "Convective Heat Transfer Experiment of Rod Bundle Flow with Twist-vane Spacer Grid," Nuclear Engineering and Design, Vol. 295, pp. 173-181. https://doi.org/10.1016/j.nucengdes.2015.10.004
  15. Lee, C. Y., 2016, "Evaluation of Convective Heat Transfer Performance of Twist-Vane Spacer Grid in Rod Bundle Flow," Transactions of the Korean Society of Mechanical Engineers B, Vol. 40, No. 3, pp. 157-164. https://doi.org/10.3795/KSME-B.2016.40.3.157
  16. Yao, S. C., Hochreiter, L. E. and Leech, W. J., 1982, "Heat-transfer Augmentation in Rod Bundles Near Grid Spacers," Journal of Heat Transfer, Vol. 104, pp. 76-81. https://doi.org/10.1115/1.3245071
  17. Miller, D. J., Cheung, F. B. and Bajorek, S. M., 2013, "On the Development of a Grid-enhanced Single-phase Convective Heat Transfer Correlation," Nuclear Engineering and Design, Vol. 264, pp. 56-60. https://doi.org/10.1016/j.nucengdes.2012.11.023
  18. Kline, S. J., 1985, "The Purposes of Uncertainty Analysis," Journal of Fluids Engineering, Vol. 107, pp. 153-160. https://doi.org/10.1115/1.3242449
  19. Lee, C. Y., Shin, C. H., Park, J. Y. and In, W. K., 2013, "An Experimental Investigation on Turbulent Flow Mixing in a Simulated $3{\times}3$ Dual-cooled Annular Fuel Bundle Using Particle Image Velocimetry," Nuclear Engineering and Design, Vol. 260, pp. 134-144. https://doi.org/10.1016/j.nucengdes.2013.03.013