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ABSTRACT. In the present work, the mathematical model of wire coating in a straight annular die is 
developed for unsteady second grade fluid in the form of partial differential equation. The Optimal 
Homotopy Asymptotic Method (OHAM) is applied for obtaining the solution of the model problem.. 
This method provides us a suitable way to control the convergence of the series solution using the 
auxiliary constants which are optimally determined. 
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1. INTRODUCTION 

    Interest in the study of non-Newtonian fluids has been mainly motivated by their importance in 
most of the problems arising from engineering practice and chemical industry. In non-Newtonian 
fluids the non-linear relation between the stress and the strain developed the non-linearity in 
equations. The exact solutions for these equations have rare in the literature.   
   The particular class of non-Newtonian fluids for which the exact solution is reasonably possible 
is the class of viscoelastic fluids, which was first introduced by Rivlin and Ericksen [1]. For 
creeping flow Rajagopal [2] established the exact solution, and for unidirectional flow Rajagopal 
[3] gives the exact solution. Hayat et al. [4, 5] and Siddiqui at el. [6] extended this idea to periodic 
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flows. Rajagopal and Gupta [7] also discussed the exact flow between the rotating parallel plates. 
We extend this idea to the problem of wire coating in cylindrical die with second order fluid. 
    Wire coating is used for the purpose of high and low voltage and protection against corrosion. 
The process is performed by dragged the wire in coating unit filled with molten polymer. The 
experimental set-up of wire coating process is given in Fig. 1. The uncoated wire unwinds at the 
payoff reel, firstly passes through a straightener, secondly through a preheater, and then a cross 
head die where the wire meets the melt polymer coming from the extruder and is coated.  The 
refined product passes through a cooling water trough, a capstan and a tester and finally, the take-
up reel wound the coated wire on the rotating reel.  
    Wire coating is an important chemical process in which different types of polymer is used. The 
coating of wire depends on geometry of the die, the viscosity of the fluid, the temperature of the 
wire and polymer used for coating the wire.  
Han and Rao [8] discussed the Rheology of wire coating extrusion. Akter and Hashmi [9, 10] 
have studied wire coating using power law fluid and investigated the effect of the change in 
viscosity. Siddiqui et al. [11] studied the wire coating extrusion in a pressure-type die in flow of 
third grade fluid. Fenner and Williams [12] carried out an analysis of the flow in the tapering 
section of a pressure type die. Sajjid et al. [13] studied the wire coating with Oldroyd 8- constant 
fluid using the Homotopy Analyses Method (HAM), and give the solution for velocity field in the 
form of series. Mitsoulis [14] have studied fluid flow and heat transfer in wire coating. 
    In this paper, the new mathematical model arises in the study of wire coating for unsteady 
incompressible second grade fluid in cylindrical die is solved by Optimal Homotopy Asymptotic 
Method (OHAM) [15-16]. In a series of papers Marinca et al. [17-19] and Islam et al. [20-21] 
have not only applied this method to nonlinear differential equations but have shown that it is 
reliable and powerful tool than other perturbation tools for non linear differential equations.  
    Recently, S. Iqbal et al. [24] have applied this method to partial differential equation for 
solution of the Klein-Gordon equations. We use this idea for the solution of partial differential 
equation arising in wire coating analysis and give some related examples to our problem for 
stability measurements. According to best of our knowledge this study has not been previously 
investigated in wire coating process. 
    The plan of the paper is as follows: Section 2 develops the fundamental governing equations of 
the unsteady second grade fluid flow between wire and die. Section 3 gives the formulation of the 
problem. Section 4 describes the basic idea of OHAM and Section 4.1 is reserved for the solution 
of the problem. In Section 5 some examples related to our problem are solved using OHAM. 
Results and discussion are given in Section 6. Finally, the conclusion is made in Section 7. 

2. BASIC EQUATIONS 

    Basic equations governing the flow of an incompressible fluid neglecting the thermal effects 
are: 

            0 u ,                                                                                    (2.1) 

                             fTdiv
Dt

u  
D

,                                                              (2.2)       
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where u  is the velocity vector of the fluid, T  the Cauchy stress tensor,   the constant density, 

f  the body force per unit mass and 
tD

D
 is the material derivative. 

For second grade fluid the stress tensor T  is defined as 

       12211 AAAIpT   ,              (2.3) 
 
in which p is the pressure, I  the identity tensor,   the coefficient of viscosity of the fluid, 

21 ,  are the  normal stress moduli and 21 , AA are the line kinematic tensors defined by      
             

      TuuA 1 ,    (2.4)
      

            1
2 1 1

TDA
A A u u A

Dt
     .         (2.5) 

 

3. PROBLEM FORMULATION 

    Let us consider an incompressible second grade fluid flow in straight annular die in wire 
coating process. The geometry of wire coating in a die is shown in Fig. 2 in which wR  and dR  

are the radii of the wire and die respectively, where the wire and die are concentric. At time 
 0t  the wire is oscillated and translated in its plane in a stationary die. The coordinate system 

is chosen at the centre of the wire, in which the axial direction z  is taken in the direction of the 
fluid flow due to the oscillation and translation of wire in that direction, where r is taken 
perpendicular to the fluid flow. 

Boundary conditions corresponding to the cosine oscillation of the boundary are: 

 At wRr  ,     1 cosww U a t  ,         0 t  

 and at  dRr  ,    0w ,     0 t ,        (3.1) 

where a is amplitude and  is frequency of oscillation of wire. 
 
Initial condition 
 ,0w     at 0t , dw RrR  ,          (3.2) 

 



204                                   R. A. SHAH, S. ISLAM, A. M. SIDDIQUI and T. HAROON 

 
FIGURE 1.  A typical wire coating line. 

 
 

 
FIGURE 2.  Schematic profile of wire coating in a straight annular die. 

 
    For the problem under consideration, we shall seek the velocity field and pressure distribution 
as 

                  trwu ,,0,0 ,  trpp , .          (3.3) 
 

     Under the consideration of velocity field given in equation (3.3), the continuity equation (2.1) 
is satisfied identically. 
On substituting equations (2.3-2.5) and (3.3) into the balance of momentum (2.2), one obtains 
component form momentum equation in the absence of body forces as:  
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  ,1 .       

 
Assume that there is no pressure gradient along the axial direction and the flow is only due to 
drag of wire. Hence, equation (3.6) with 0p z    yields: 
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The volume flow rate of coating is  

  22
wcw RRUQ   ,         `       (3.8) 

where cR  is the radius of the coated wire. On the other hand at the cross-section, within the die, 

the volume flow rate is   

  drrwrQ
d

W

R

R

 2 .            (3.9) 

The thickness of the coated wire can be obtained from equations (3.8) and (3.9). 
The force on the total wire surface in the die is 

 
WRrrzw LSRF


 2 .              (3.10) 

 

Equation (3.7) with the appropriate boundary conditions (3.1) is solved with the help of OHAM 
to obtain the approximate solution for velocity field. The pressure distribution function can be 
then obtained from equation (3.4).  

4. BASIC IDEA OF OHAM 

Here, we present the basic idea of OHAM, for this consider the boundary value problem of the 
form 
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     ,,0,,  rtrhtrwK  ,,0, 










r
t

w
wB         (4.1) 

where K  is a differential operator and B  is a boundary operator,  trw ,  is the unknown 

function, r  and t  denotes the spatial and time independent variables, respectively,   is the 
boundary of the domain   and  trh ,  is a known analytic function. In general form the operator  

K  can be written as  
 ,NLK               (4.2) 

where L  is a linear operator and N  is a nonlinear operator.  
 
    According to OHAM, one can construct a Homotopy      1,0:;, ptr  which 
satisfies 
 
                          ,0,,,;,1,;,  trhtrwKpHtrhptrLppptrH       (4.3) 
 
where  1,0p  is an embedding parameter,  pH  is a nonzero auxiliary function for 0p  

and   00 H . Obviously, when 0p  and 1p , we have    trwtr ,0;, 0  and 

   trwtr ,1;,  , respectively. 

Thus as p  varies from 0  to 1 , the solution  ptr ;, approaches from  trw ,0  to  trw , , 

where  trw ,0  is obtained from equation (4.3) when 0p  giving 

     0,,0,0;, 0
0 












t

w
wBtrhtrL .           (4.4) 

    The auxiliary function ( , )iH p c  depends either upon some constants [15-19] or upon some 

functions depending on a physical parameter [22, 23]. It was shown in [22, 23] that a more 
complex function ( , )iH p c  leads to more accurate results. 

Next, we choose the auxiliary function of the form 
 

   ...,3
3

2
2

1  CpCppCpH            (4.5) 

where ,...,,, 321 CCC  are constants to be determined later. 

To get an approximate solution, we expand  iCptr ,;,  in Taylor’s series about p in the 

following manner: 

       k
k

k
ki pCCCCtrwtrwCptrw ,...,,,,,,,;,~

321
1

0 




 .             (4.6) 

Substituting equation (4.6) into equation (4.3) and equating the coefficient of like powers of p , 
we obtain the following linear equations. 
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Zeroth order problem is given by equation (4.4) and the first and second order problems are given 
by equations (4.7) and (4.8) respectively: 
  

        0,,,,, 1
10011 












t

w
wBtrwNCtrhtrwL  

               

0,

,,,,,,

2
2
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t

w
wB

trwNtrwLCtrwNCtrwLtrwL

       (4.7) 

 
The general governing equations for  trwk ,   are given by:  
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t

w
wB k

k               (4.8)  

where       trwtrwtrwN kik ,,...,,,, 110   is the coefficient of ikp   in the expansion of 

  ptrN ;,  about the embedding parameter p [15-19]. 

         .,...,,,,;, 210
1

00
ik

ik
ik

ik pwwwwNtrwNptrN 





                   (4.9) 

It has been convenient that the convergence of the series (4.6) depends upon the auxiliary 
constants 1 2,, ...C C . 

If it is convergent at 1p  ,  

      ik
ik

ik
iik CCCCtrwtrwCCCCtrw 






  ,...,,,,,,,...,,,,,~

321
1

0321 .        (4.10) 

Substitution of equation (4.10) into equation (3.7), results the following expression for residual: 
      

  .,...,,,,,~
,,...,,,,,~,...,,,,,

321

321321

ik

ikik

CCCCtrwN

trhCCCCtrwLCCCCtrR








     (4.11) 

If 0R  , then we recover the exact solution of the problem. Usually it doesn’t happen, 
particularly in non-linear problems. 
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    Numerous methods like Method of Least Squares, Galerkin’s Method, Ritz Method, and 
Collocation Method are used to find the optimal values of , 1,2,3,...iC i  . We apply the 

Method of Least Squares in our problem as given below: 

     dtdrCCCCtrRCCCCJ ik

b

a

ik   ,...,,,,,,...,,, 321
2

321 ,      (4.12)  

 0...
321

















ikC

J

C

J

C

J

C

J
,                 (4.13) 

where anda b are properly chosen numbers from the domain of the problem to hit upon the 

desired  ikiCi  ,...,2,1 . Finally, from these known constants, the approximate solution (of 

order ik  ) is well-determined. 

4.1 SOLUTION OF THE PROBLEM 

    Construct a homotopy for equation (3.7) with the corresponding boundary conditions given in 
equation (3.1) according to equation (4.3).  

We obtain zeroth, first order and second order problem. For solution of the problem the we 
take 1dR  and the radius of the wire .10,  wR   

 

          
2

0 0 0
2

1
: 0,

w w
p

r r r

 
 

 
                                      

(4.14) 
 
subject to the boundary conditions 
 

     taUtwtw w  cos1,,0,1 00  ,        (4.15) 

 
2 '

1 0 0 0 01 1 1 1
12

2 2 2
'0 0 0

1 12 2 2

1 1
:

0,

w w w ww w C C
p C

r r r t r r r r r t r

w w w
C C

r r t r





                    
   

        

                             (4.16) 

 
subject to boundary conditions 
 

         0,,0,1 11  twtw  ,            (4.17) 
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2 '
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w
C

t r

 

 



                     
                         

 
    

           (4.18) 

subject to the boundary conditions  
 

    0,,0,1 22  twtw           (4.19) 

where 


 1
  and 


 ' . 

Zeroth order problem given by equations (4.14) and (4.15) are the following solution:   

                   



ln

ln
cos10

r
taUw w  ,                                                       (4.20) 

If equation (4.20) is substituted into equation (4.16), and solving subject to the boundary 
conditions (4.17) gives the first order solution as bellow:  
 





  tra

w
UCrtrtra

w
UCta

w
UCw  sinln1

2sinln11sin2
1sin18

1
1

,    (4.21)                                   

 
Similarly the second order solution obtains from equations (4.18) and (4.19) is as follows: 

2 2sin sin ln sin ln sin cos ln cos2 12 13 14 15 16 17
2 2 4 4cos ln cos cos ln cos ,18 19 11 12

w t r t r t r r t t r t

r t r r t r t r r t

           

     

     

   
      (4.22) 

 
Finally, the second order approximate solution is 
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  ln 1 1 21 cos sin sin1 1ln 8 8
1 1 2ln sin ln sin sin11 1 128 8

2 2sin ln sin ln sin cos13 14 15 16
2 2 4ln cos cos ln cos cos17 18 19 11

4 ln cos12

w

r
w U a t C U a t C U a r t

w w

r t r C U a r t t
w

r t r t r r t t

r t r t r r t r t

r r

      


      

       

      



   

  

   

    

 ,t

     (4.23) 

where 11191817161514131211 ,,,,,,,,,   and 12  are constants involving the 

auxiliary constants 21 , CC   are given as bellow: 

w
UCa 1

1
ln1

ln 2

2

11 





 





  , 

  wUaCCC  2
2

1112 6

1
 , 

  wUaCCC  2
2

1113 6

1
 , 

wUaCCCCCCC 


 





  2
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22

22
1

2
1

2
1114

2
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1
, 

  wUaCCC  2
2

1115 6

1
 , 

wUaCCCCCCC 2
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'2
1

22
11

'2
1

22
116 32

4

5
8

48
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2 2 2 4 2 ' 2 ' 2 2 2
17 1 1 1 1 1 1

2 2 4 2 4 2 ' ' 2 2
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( 2 )

48ln 12 12 414
1 13 3 3 9
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48 414 96 48 48
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1
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1

22
1

2
1

'22
1

2
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1

22
11 64

1  , 
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wUCa 2
1

22
12 96

1   

 
Table 1. Shows velocity distribution of fluid flow between the wire and die for different values of time by 

taking 01.0,5.0,2,2.0,02.0
'

,2.0  awU  and 40902455892.02,5924838150.01  CC . 

 
   r           velocity distribution  
 1t  10t  20t  30t  

      0.2                        2.0196                      2.01081                    1.99168                   1.98020 
      0.3                        1.51081                    1.50426                    1.48995                   1.48133 
      0.4                        1.14982                    1.14484                    1.13396                   1.12738 
      0.5                        0.869806                  0.866054                  0.85782                   0.852834 
      0.6                        0.641019                  0.63826                    0.632192                 0.628511 
      0.7                        0.447581                  0.445658                  0.441421                 0.438847 
      0.8                        0.280017                  0.278815                  0.276165                 0.274553 
      0.9                        0.132214                  0.131647                  0.130396                 0.129634 
      1.0                              0                               0                               0                              0 

 
 
Table 2. Shows velocity distribution of fluid at various domain points at different time level by taking 

01.0,5.0,2,2.0,02.0
'

,2.0  awU  and 40902455892.02,5924838150.01  CC . 

 
       t             velocity distribution  

2.0r   22.0r                  24.0r   26.0r  
 

     0                          2.02                         1.90038                      1.79117                    1.69071 
     1                          2.0196                     1.9                              1.79082                    1.69038 
     2                          2.01842                   1.8989                        1.78978                    1.6894 
     3                          2.01651                   1.8971                        1.78808                    1.6878 
     4                          2.01393                   1.89468                      1.7858                      1.68565 
     5                          2.01081                   1.89174                      1.78303                    1.68304 
     6                          2.00725                   1.88839                      1.77988                    1.68006 
     7                          2.0034                     1.88477                      1.77647                    1.67684 
     8                          1.99942                   1.88102                      1.77294                    1.67351 
     9                          1.99546                   1.8773                        1.76942                    1.67019 
     10                        1.99168                   1.87374                      1.76607                    1.66703 

     
Table 3.  Shows velocity distribution of fluid at various orders along the domain at 10t time level by 

taking 01.0,5.0,2,2.0,02.0
'

,2.0  awU  and 40902455892.02,5924838150.01  CC . 

 
    r             velocity distribution  

Zeroth order                   First order  Second order 
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  0.2                          2.00848                              2.00848                             2.00848 
  0.3                                1.50249                               1.50247                             1.50245 
  0.4                                1.14348                               1.14345                             1.14343 
  0.5                                0.865007                             0.864975                           0.864956 
  0.6                                0.63748                               0.637452                           0.637434 
  0.7                                0.445109                             0.445086                           0.445073 
  0.8                                0.27847                               0.278454                           0.278445 
  0.9                                0.131484                             0.131476                           0.131471 
  1.0                                      0                                  0                                0 

 
Table 4. Shows velocity distribution of fluid flow at different values of time by using 

5.0,8.0,2,2.0,02.0
'

,2.0  awU  and 306008832.02,3296806629.01  CC . 

 
   r         velocity distribution  
               1t      5t        10t         15t  
     0.2                        2.98007                    2.5403                      1.58385                     1.01001 
     0.3                        2.22989                    1.90284                    1.18755                     0.755984 
     0.4                        1.69744                    1.44974                    0.9055                       0.575615 
     0.5                        1.28429                    1.09767                    0.68605                     0.435604 
     0.6                        0.946615                  0.80953                    0.50623                     0.321125 
     0.7                        0.661032                  0.565557                  0.35381                     0.224274 
     0.8                        0.413589                  0.353968                  0.221506                   0.140335 
     0.9                        0.195292                  0.167173                  0.104633                   0.0662685 
     1.0                               0                               0                               0                               0 

 
 
Table 5. Shows velocity distribution at different time level by taking 

5.0,8.0,2,2.0,02.0
'

,2.0  awU  and 306008832.02,3296806629.01  CC . 

 
     t                    velocity distribution  

2.0r   22.0r                  24.0r    26.0r  
 

     0                             3.0                        2.82234                      2.66015                       2.51095 
     2                             2.92106                2.74839                      2.59074                       2.44569 
     4                             2.69671                2.53759                      2.39229                       2.25859 
     6                             2.36236                2.22322                      2.09614                       1.9792 
     8                             1.9708                  1.85491                      1.74905                       1.65161 
    10                            1.58385                1.4908                        1.4058                         1.32756 
    12                            1.26261                1.18839                      1.12059                       1.05819 
    14                            1.05778                0.995411                    0.938457                     0.886046 
    16                            1.00171                0.942339                    0.888144                     0.838293 
    18                            1.10324                1.03755                      0.9776                         0.922476 
    20                            1.34636                1.26601                      1.1927                         1.1253 
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Table 6. Shows velocity distribution at various orders at 5t  time level by taking 

5.0,8.0,2,2.0,02.0
'

,2.0  awU  and 306008832.02,3296806629.01  CC . 

 
    r velocity distribution  

Zeroth order                   First order  Second order 
 

   0.2                            1.58385                                1.58385                              1.58385 
   0.3                            1.18483                                1.18581                              1.18755 
   0.4                            0.901725                              0.903092                            0.9055 
   0.5                            0.682128                              0.683551                            0.68605 
   0.6                            0.502705                              0.503985                            0.50623 
   0.7                            0.351005                              0.352024                            0.35381 
   0.8                            0.219596                              0.220289                            0.221506 
   0.9                            0.103686                              0.104029                            0.104633 
   1.0                                   0                                           0                                         0 
 
 

 
 

FIGURE 3. Velocity profile for 01.0,5.0,2,2.0,02.0
'

,2.0  awU  and 

40902455892.02,5924838150.01  CC . 
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           FIGURE 4.  Velocity profile for at different values of  r by  taking    

           01.0,5.0,2,2.0,02.0
'

,2.0  awU  and 

            40902455892.02,5924838150.01  CC . 

 

 
            FIGURE 5.  Velocity profile for at different values of  t  by  taking    

                01.0,5.0,2,2.0,02.0
'

,2.0  awU  and 

                40902455892.02,5924838150.01  CC . 
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FIGURE 6.  Velocity distribution of fluid flow at t=2 by taking  

5.0,8.0,2,2.0,02.0
'

,2.0  awU  and          

 306008832.02,3296806629.01  CC . 

 

  
               FIGURE 7.  Velocity distribution of fluid at different values of r by taking 0.5t                 

                           5.0,8.0,2,2.0,02.0
'

,2.0  awU  and 

                       306008832.02,3296806629.01  CC . 
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   FIGURE 8. Velocity profile for at different values of  t  by  taking  

               5.0,8.0,2,2.0,02.0
'

,2.0  awU  and 

                             306008832.02,3296806629.01  CC . 

 
SECTION 5 

 
 To investigate the stability and convergence of OHAM, we make an effort to solve some linear 
and non-linear partial differential equations with known exact solution. 
Example 5.1 

2

2
, 0 1,

w w
r

t r

 
  

 
         (5.1) 

with the boundary and initial conditions 

       1,0 , 0, , 1, .r t tw r e w t e w t e                          (5.2) 

The exact solution of equation (5.1) with the corresponding boundary condition (5.2) is as follows 

              tretrw , .             (5.3) 
Here, we have  

               
2

2
, , , .

w w
L w r t N w r t

r t

 
  
 

      (5.4) 

Following the procedure of OHAM, we obtain the solution to the given problem up to third order 
approximation with  
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78.0.001884883

4006,-0.00186252

 67,0.972417511







C

C

C

 

The absolute error is presented in the form of numerical data in Table 7 and Table 8. 
 
Example 5.2 

  10,2
2

2











  re

r

w
w

r

w

t

w tr ,               (5.5) 

with the boundary and initial conditions 

       ttr etwetwerw  1,1,,0,0, .         (5.6) 
Having the exact solution 

              tretrw , .             (5.7) 
Here, we have  

                   tretrh
r

w
w

t

w
trwN

r

w
trwL 












 2
2

2

,,,,, ,         (5.8) 

Handling, the problem with OHAM as discussed earlier, we obtain the third order approximate 
solution with  

289.0.435794323

89,-0.32161192

 1,0.555334661







C

C

C

 

The absolute error of Example 2 is presented in the form of numerical data in Table 9 and Table 
10. 
 
Example 5.3 

10,
2

1
2

2






























r
r

w

tr

w

t

w
,          (5.9) 

with the boundary and initial conditions 

       22 1,1,,0,0, ttwttwrrw  ,       (5.10) 
The exact solution to the problem is as bellow 

              2, trtrw  .                (5.11) 
In this case, we have                                        

       ,2,,,
2

2























r

w

tt

w
trwN

r

w
trwL     (5.12) 

Applying OHAM as discussed in previous section, we obtain the third order approximate solution 
with  
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93001897.1.159742133

805438448,-1.52398502

 18147899,0.869890711







C

C

C

 

The absolute error of Example 3 can be observed from the numerical data in Tables 11 and Table 
12. 
 
 
TABLE 7. The absolute error (Example 1) at different orders of approximation at .2t  
 

   r Absolute error OHAMwxactw   

Zeroth order  First order                    Second order       Third 
order 

 

0.0                0                                         0                                      0                                        0 
0.1                0.0814154                   0.00570537                    0.249482×10-5                      7.56031×10-9 
0.2                0.149321                     0.0110026                      0.481734 ×10-4                    1.52796×10-8 
0.3                0.202296                     0.0152718                      0.666759×10-4                      2.31512×10-8 
0.4                0.23877                       0.0180423                      0.780313×10-4                      3.11826×10-8 
0.5                0.257007                     0.0190087                      0.808035×10-4                      3.85911×10-8 
0.6                0.25509                       0.0180482                      0.747926×10-4                      4.34906×10-8 
0.7                0.2309                         0.0152395                      0.611×10-4                          4.32616×10-8 
0.8                0.182092                     0.0108845                      0.41991×10-4                        3.56143×10-8 
0.9                0.106079                     0.00553118                    0.205352×10-4                      2.01492×10-8 
1.0                       0                                  0                                     0                                         0 

 
TABLE 8. The absolute error (Example 1) of third order approximation by OHAM at different time level 
shown in table.  
 

   r Absolute error OHAMwxactw   

   1t         3t                           5t  
 

      0.0                                 0                      0                             0 
      0.1                           6.25207×10-9                         6.84085×10-9                            1.02053×10-9 
      0.2                           1.26356×10-8                         1.38256×10-8                            2.06253×10-8 
      0.3                           1.91451×10-8                         2.09481×10-8                            3.12508×10-8 
      0.4                           2.57868×10-8                         2.82152×10-8                            4.20921×10-8 
      0.5                           3.19133×10-8                         3.49187×10-8                            5.20926×10-8 
      0.6                           3.59649×10-8                         3.93519×10-8                            5.87061×10-8 
      0.7                           3.57756×10-8                         3.91447×10-8                            5.8397×10-8 
      0.8                           2.94516×10-8                         3.22251×10-8                            4.80743×10-8 
      0.9                           1.66625×10-8                         1.82317×10-8                            2.71985×10-8 
      1.0                                  0                                            0                                                0                         
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TABLE 9. The absolute error (Example 2) at different orders of approximation at .5.0t  
 

   r Absolute error OHAMwxactw   

Zeroth order  First order                    Second order       Third 
order 

 

    0.0                0   0                                   0                     0 
    0.1             0.00673272                      0.00284105                 0.000107105                      0.000036837 
    0.2             0.0123482                        0.00491567                 0.000238502                      0.000070689 
    0.3             0.016729                          0.00629913                 0.000373329                      0.000102489 
    0.4             0.0197453                        0.00705434                 0.000492424                      0.000130985 
    0.5             0.0212534                        0.00723054                 0.000578245                      0.00015322 
    0.6             0.0210949                        0.0068619                   0.000614799                      0.00016496 
    0.7             0.0190945                        0.00596588                 0.000587582                      0.00016111 
    0.8             0.0150583                        0.00454153                 0.000483547                      0.000136094 
    0.9             0.00877234                      0.00256752                 0.00029108                        0.000084219 
    1.0                   0                                     0                                 0                   0 

 
 
TABLE 10.  The absolute error (Example 2) of third order approximation by OHAM at different time level 
shown in table.  
 

   r Absolute error OHAMwxactw   

2.0t          7.0t                          2.1t  
 

       0.0                               0                                              0                                               0 
       0.1                          0.000036837                           0.0000379589                           0.0000445452 
       0.2                          0.000070689                           0.0000728427                           0.0000854817 
       0.3                          0.000102489                           0.00010561                               0.000123934 
       0.4                          0.000130985                           0.000134974                             0.000158394 
       0.5                          0.00015322                             0.000157886                             0.000185281 
       0.6                          0.00016496                             0.000169984                             0.000199478 
       0.7                          0.00016111                             0.000166016                             0.000194822 
       0.8                          0.000136094                           0.000140239                             0.000164572 
       0.9                          0.0000842191                         0.0000867839                           0.000101842 
       1.0                                0                                              0                                              0 

 
TABLE 11.  The absolute error (Example 3) at different orders of approximation at .2t  
 

   r Absolute error  OHAMwxactw   

Zeroth order               First order                  Second order  Third order 
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   0.0                   0                                  0                                  0                                        0 
   0.1               0.0285                       0.000134087              0.111993×10-4                      0.402434×10-5 
   0.2               0.048                         0.00102312                0.199196×10-4                      0.805369×10-5 
   0.3               0.0595                       0.00308721                0.245956×10-4                      0.115625×10-4 
   0.4               0.064                         0.0055984                  0.245932× 10-4                     0.139915×10-4 
   0.5               0.0625                       0.00803744                0.201174×10-4                      0.148591×10-4 
   0.6               0.056                         0.0098477                  0.122106×10-4                      0.138719×10-4 
   0.7               0.0455                       0.0104624                  0.280969×10-5                      0.110492×10-4 
   0.8               0.032                         0.00933614                0.517164×10-5                      0.687801×10-5 
   0.9               0.0165                       0.0059802                  0.777698×10-5                      0.250961×10-5 
   1.0                   0                                 0                                 0                                             0 

 
TABLE 12.  The absolute error (Example 3) of third order approximation by OHAM at different time level 
shown in table.  
 

  r Absolute error OHAMwxactw   

5.0t                       5.1t   5.2t     0.3t                  
 

    0.0    0    0       0  0 
    0.1                       0.208495×10-4             0.197658×10-4       0.186455×10-5          0.17491×10-5 
    0.2                       0.376054×10-4             0.35773×10-4       0.338665×10-5          0.318911×10-5 
    0.3                       0.479629×10-4 0.459034×10-4              0.437308×10-5          0.414529×10-5 
    0.4                       0.517735×10-4 0.49929×10-4                0.479772×10-5          0.458895×10-5 
    0.5                       0.503948×10-4 0.491237×10-4 0.476926×10-5          0.461118×10-5 
    0.6                       0.459324×10-4 0.452381×10-4 0.443965×10-5          0.434159×10-5 
    0.7                       0.394581×10-4 0.392185×10-4 0.338482×10-5          0.384126×10-5 
    0.8                       0.303416×10-4 0.303955×10-4 0.30385×10-5            0.31313×10-5 
    0.9                       0.169306×10-4 0.171267×10-4 0.172969×10-5          0.174421×10-5 
    1.0                              0      0       0    0 

 

6. RESULTS AND DISCUSIONS 

    The formulation presented in Section 4 and illustration of the formulation in the examples 
given in Section 5 provides accurate solution without discretization of the problem domain. 
Examples 1-3 gives the numerical solution of zeroth, 1st, 2nd and 3rd order problem in Tables 7,9 
and 11 which shows that as the order of OHAM increase the accuracy of the solution also 
increase, which confirms the convergence of OHAM. As the fluid flow is due to the oscillation 
and translation of the wire so the velocity of the fluid will be high at the surface of the wire as 
compared to remaining domain and will be decrease for the fluid away from the surface of wire, 
these phenomena can be observed from Tables 1, 2 and Tables 4, 5. Tables 3 and 6 illustrate the 
solution of different order problems at time 10t , and 5t  respectively for different 
parameters which show that the effect of nonlinearity in the problem is less effective because the 
absolute errors between different order problems are very less. It is evident from Tables 7-12 that 
OHAM can be applied for large time domain and the accuracy remains almost consistent. 
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7. CONCLUSION 

    In this paper, we model the unsteady second grade fluid flow between wire and die with one 
oscillating boundary and other stationary in the form of partial differential equation. The model 
problem is solved by OHAM using the boundary conditions only and obtained satisfactory results. 
For stability of OHAM some time dependent linear and non-linear problems are solved having 
exact solutions. The obtained results verify that OHAM is convergent to the exact solution as the 
order increases. Furthermore, this method provides a convenient way to control the convergence 
by optimally determining the auxiliary constants. This work extends the idea of OHAM that it is 
not only use for the solution of linear and non-linear differential equations but also can be applied 
for linear and non-linear partial differential equations.  
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