• Title/Summary/Keyword: Annealing $SiO_2$

Search Result 855, Processing Time 0.034 seconds

LS-MOCVD OF BARIUM STRONTIUM TITANATE THIN FILMS USING NOVEL PRECURSORS

  • Kwon, Hyun-Goo;Oh, Young-Woo;Park, Jung-Woo;Lee, Young-Kuk;Kim, Chang-Gyoun;Kim, Do-Jin;Kim, Yunsoo
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.19-19
    • /
    • 2002
  • Perovskite-type titanate dielectrics have attracted much attention in memory devices such as DRAMs or FeRAMs due to their high dielectric constants. However, low volatility of the Ba, Sr, Pb or Zr precursors with only thd ligands has limitations in obtaining high quality thin films by liquid source metal organic chemical vapor deposition (LS-MOCVD) processes. To improve the volatility of these precursors, many attempts have been made such as adding polyether ligands to satisfy the coordinative saturation. We report the synthesis of new precursors Ba(thd)₂(tmeea) and Sr(thd)₂(tmeea), where tmeea = tris[2-(2-methoxyethoxy)ethyl]amino, and LS-MOCVD of barium strontium titanate (BSTO) thin films using these precursors. Due to increased basicity of amines compared with ethers, it is expected that the nitrogen-donor ligand will make a strong bond to a metal than an analogous oxygen-donor ligand, consequently improving the volatility and thermal behavior of these precursors. Thin films of BSTO were grown on Pt(111)/SiO₂/Si(100) substrates by LS-MOCVD using a cocktail source consisting of the conventional Ti precursor Ti(thd)₂(O/sup i/Pr), and these new Ba and Sr precursors. As-grown films were characterized by XPS, SEM, XRD, XRF, and C-V and I-V measurements. BSTO films grown at 420℃ were stoichiometric barium strontium titanate with very smooth surface morphology and their dielectric constants were found to be as targe as 450. Dependence of the composition, microstructure and the electrical properties of the BSTO films on the growth temperature, annealing temperature, working pressure, and the composition of the cocktail source will be discussed.

  • PDF

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF

A facile synthesis of transfer-free graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Jang, Seong Woo;Hwang, Sehoon;Yoon, Jung Hyeon;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.129-129
    • /
    • 2016
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which needs transfer to desired substrates for various applications. However, the transfer steps are not only complicated but also inevitably induce defects, impurities, wrinkles, and cracks of graphene. Furthermore, the direct synthesis of graphene on dielectric surfaces has still been a premature field for practical applications. Therefore, cost effective and concise methods for transfer-free graphene are essentially required for commercialization. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer. In order to fabricate 100 nm thick NiC layer on the top of $SiO_2/Si$ substrates, DC reactive magnetron sputtering was performed at a gas pressure of 2 mTorr with various Ar : $CH_4$ gas flow ratio and the 200 W DC input power was applied to a Ni target at room temperature. Then, the sample was annealed under 200 sccm Ar flow and pressure of 1 Torr at $1000^{\circ}C$ for 4 min employing a rapid thermal annealing (RTA) equipment. During the RTA process, the carbon atoms diffused through the NiC layer and deposited on both sides of the NiC layer to form graphene upon cooling. The remained NiC layer was removed by using a 0.5 M $FeCl_3$ aqueous solution, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. In order to confirm the quality of resulted graphene layer, Raman spectroscopy was implemented. Raman mapping revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Additionally, sheet resistance and transmittance of the produced graphene were analyzed by a four-point probe method and UV-vis spectroscopy, respectively. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

Characterization of Interfacial Adhesion of Cu-Cu Bonding Fabricated by Thermo-Compression Bonding Process (열가압 접합 공정으로 제조된 Cu-Cu 접합의 계면 접합 특성 평가)

  • Kim, Kwang-Seop;Lee, Hee-Jung;Kim, Hee-Yeoun;Kim, Jae-Hyun;Hyun, Seung-Min;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.929-933
    • /
    • 2010
  • Four-point bending tests were performed to investigate the interfacial adhesion of Cu-Cu bonding fabricated by thermo-compression process for three dimensional packaging. A pair of Cu-coated Si wafers was bonded under a pressure of 15 kN at $350^{\circ}C$ for 1 h, followed by post annealing at $350^{\circ}C$ for 1 h. The bonded wafers were diced into $30\;mm\;{\times}\;3\;mm$ pieces for the test. Each specimen had a $400-{\mu}m$-deep notch along the center. An optical inspection module was installed in the testing apparatus to observe crack initiation at the notch and crack propagation over the weak interface. The tests were performed under a fixed loading speed, and the corresponding load was measured. The measured interfacial adhesion energy of the Cu-to-Cu bonding was $9.75\;J/m^2$, and the delaminated interfaces were analyzed after the test. The surface analysis shows that the delamination occurred in the interface between $SiO_2$ and Ti.

A preparation of hexacelsian powder by solution-polymerization route and its phase transformation behavior (Solution- polymerization 방법에 의한 hexacelsian 분말의 합성 및 상전이 공정에 의한 celsian 소결체의 제조)

  • Sang-Jin Lee;Young-Soo Yoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.428-436
    • /
    • 1997
  • Hexacelsian ($BaO{\cdot}Al_2O_3{\cdot}2SiO_2$) powder was prepared by a solution-polymerization route employing PVA solution as a polymeric carrier. A fine amorphous-type hexacelsian powder with an average particle size of 0.8 $\mu \textrm{m}$ and a BET specific surface area of $63 \textrm{m}^2$/g was made by a ball-milling the powder precursor for 12 h after calcination at $800^{\circ}C$ for :1 h. A densified hexacelsian was obtained through sintering at $1550^{\circ}C$ for 2 h under an air atmosphere. The $\alpha\longleftrightarrow\beta$ and $\beta\longleftrightarrow\gamma$ displacive phase transformation in polycrystalline hexacelsia,n was examined by using dilatometry and differential scanning calorimtry. The reconstructive transformation between hexacelsian and celsian was obtained by annealing at $1600^{\circ}C$ for 72h. Volume contraction of 5.6% was accompanied by the reconstructive transformation.

  • PDF

A Study on the Structural and Magnetoresistance Properties of Co/Ag Multilayers (Co/Ag 다층박막의 구조 및 자기저항 현상에 관한 연구)

  • 이용규;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.2
    • /
    • pp.86-92
    • /
    • 1996
  • The structural, magnetic and magnetoresistance properties of Co/Ag multilayer films prepared by thermal coevaporation were studied. When the Ag layer was $60{\AA}$ thick, the Co layer behaved ferromagnetically even with the thickness of $5{\AA}$. However, when the thickness of Ag layer was $30{\AA}$ and that of Co layer was less than $15{\AA}$ thick, the Co layer became discontinuous and the islands of Co behaved mostly superpararnagnetically. The maximum MR ratio, 6.1% was obtained in the $3000{\AA}\;Ag30{\AA}/Co10{\AA}$ Ag30 A ICo 10 A discontinuous multilayer. Agglomeration of the Co layer was promoted by annealing and hence MR ratio increased when the thickness of Ag layer was thinner than $15{\AA}$. The SiO underlayer enhanced the MR ratio in the $1000{\AA}$ thick multilayer via the layer structure improvement.

  • PDF

Study on the Electrical Characteristics of Solution-processed ZrInZnO Thin-film Transistors (액상공정으로 제작된 ZrInZnO 박막 트랜지스터의 전기적 특성에 관한 연구)

  • Jeong, Tae-Hoon;Kim, Si-Joon;Yoon, Doo-Hyun;Jeong, Woong-Hee;Kim, Dong-Lim;Lim, Hyun-Soo;Kim, Hyun-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.458-462
    • /
    • 2011
  • Soution-processed ZrInZnO (ZIZO) thin-film transistors (TFTs) with varying Zr content were fabricated. The ZIZO TFT (Zr=20 at. %/Zn) has an optimal performance with the saturation field effect mobility of 0.77 $cm^2/Vs$, the threshold voltage (Vth) of 2.1 V, the on/off ratio of $4.95{\times}10^6$, and subthreshold swing (S.S) of 0.73 V/decade. Using this optimized ZIZO TFT, the positive and negative gate bias stress according to annealing temperature was also investigated. While the Vth shifts dramatically after 1,000 s of both gate bias stresses, variations in the S.S are negligible. It suggests that electrons or holes are tem porarily trapped in the gate insulator, the semiconductor, or the interface between both layers.

The Optimization of $0.5{\mu}m$ SONOS Flash Memory with Polycrystalline Silicon Thin Film Transistor (다결정 실리콘 박막 트랜지스터를 이용한 $0.5{\mu}m$ 급 SONOS 플래시 메모리 소자의 개발 및 최적화)

  • Kim, Sang Wan;Seo, Chang-Su;Park, Yu-Kyung;Jee, Sang-Yeop;Kim, Yun-Bin;Jung, Suk-Jin;Jeong, Min-Kyu;Lee, Jong-Ho;Shin, Hyungcheol;Park, Byung-Gook;Hwang, Cheol Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.111-121
    • /
    • 2012
  • In this paper, a poly-Si thin film transistor with ${\sim}0.5{\mu}m$ gate length was fabricated and its electrical characteristics are optimized. From the results, it was verified that making active region with larger grain size using low temperature annealing is an efficient way to enhance the subthreshold swing, drain-induced barrier lowering and on-current characteristics. A SONOS flash memory was fabricated using this poly-Si channel process and its performances are analyzed. It was necessary to optimize O/N/O thickness for the reduction of electron back tunneling and the enhancement of its memory operation. The optimized device showed 2.24 V of threshold voltage memory windows which coincided with a well operating flash memory.

Fabrication of IGZO-based Oxide TFTs by Electron-assisted Sputtering Process

  • Yun, Yeong-Jun;Jo, Seong-Hwan;Kim, Chang-Yeol;Nam, Sang-Hun;Lee, Hak-Min;O, Jong-Seok;Kim, Yong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.2-273.2
    • /
    • 2014
  • Sputtering process has been widely used in Si-based semiconductor industry and it is also an ideal method to deposit transparent oxide materials for thin-film transistors (TFTs). The oxide films grown at low temperature by conventional RF sputtering process are typically amorphous state with low density including a large number of defects such as dangling bonds and oxygen vacancies. Those play a crucial role in the electron conduction in transparent electrode, while those are the origin of instability of semiconducting channel in oxide TFTs due to electron trapping. Therefore, post treatments such as high temperature annealing process have been commonly progressed to obtain high reliability and good stability. In this work, the scheme of electron-assisted RF sputtering process for high quality transparent oxide films was suggested. Through the additional electron supply into the plasma during sputtering process, the working pressure could be kept below $5{\times}10-4Torr$. Therefore, both the mean free path and the mobility of sputtered atoms were increased and the well ordered and the highly dense microstructure could be obtained compared to those of conventional sputtering condition. In this work, the physical properties of transparent oxide films such as conducting indium tin oxide and semiconducting indium gallium zinc oxide films grown by electron-assisted sputtering process will be discussed in detail. Those films showed the high conductivity and the high mobility without additional post annealing process. In addition, oxide TFT characteristics based on IGZO channel and ITO electrode will be shown.

  • PDF

A Study on Temperature Dependence of Tunneling Magnetoresistance on Plasma Oxidation Time and Annealing Temperature (플라즈마 산화시간과 열처리 조건에 따른 터널링 자기저항비의 온도의존특성에 관한 연구)

  • Kim, Sung-Hoon;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.99-104
    • /
    • 2004
  • We have studied to understand the barrier and interface qualities and structural changes through measuring temperature dependent spin-polarization as functions of plasma oxidation time and annealing time. Magnetic tunnel junctions consisting of SiO2$_2$/Ta 5/CoFe 17/IrMn 7.5/CoFe 5/Al 1.6-Ox/CoFe 5/Ta 5 (numbers in nm) were deposited and annealed when necessary. A 30 s,40 s oxidized sample showed the lowest spin-polarization values. It is presumed that tunneling electrons were depolarized and scattered by residual paramagnetic Al due to under-oxidation. On the contrary, a 60s, 70 s oxidized sample might have experienced over-oxidation, where partially oxidized magnetic dead layer was formed on top of the bottom CoFe electrode. The magnetic dead layer is known to increase the probability of spin-flip scattering. Therefore it showed a higher temperature dependence than that of the optimum sample (50 s oxidation). temperature dependence of 450 K annealed samples was improved when the as-deposited one compared. But the sample underwent 475 K and 500 K annealing exhibits inferior temperature dependence of spin-polarization, indicating that the over-annealed sample became microstucturally degraded.