• Title/Summary/Keyword: Anisotropy field

Search Result 417, Processing Time 0.023 seconds

Formation of Induced Anisotropy in Amorphous Sm-Fe Based Alloy Thin Films (비정질 Sm-Fe계 합금 박막의 유도자기이방성 형성)

  • 송상훈;이덕열;한석희;김희중;임상호
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.261-269
    • /
    • 1998
  • Induced anisotropy with the energy of $6{\times}10^4\; J/m^3$ is obtained in amorphous Sm-Fe based thin films which are fabricated by rf magnetron sputtering under a magnetic field of 500~600 Oe. Compared with conventional thin films, the anisotropic thin films exhibit a similar "saturation" magnetostriction, but show a very large anisotropy in magnetorstiction which is of significant practical importance due to increased strain at a particular direction. It is shown from a systematic investigation over a wide composition range for binary Sm-Fe alloys that anisotropy is also induced, though small, during a normal sputtering procedure due to the stray field, and the largest anisotropy is observed in the composition range of 25~30 at.% Sm. Furthermore, induced anisotropy is also found to be formed by magnetic annealing, but the anisotropy energy is much smaller than that by magnetic sputtering. This may be because the volume diffusion by which atoms move during magnetic annealing to from induced anisotropy is much slower than the surface diffusion which is expected to be a dominant factor during magnetic sputtering.puttering.

  • PDF

Study on electro-optic characteristics of FFS mode using a positive LC (양의 액정을 이용한 Fringe Field Switching mode의 전기-광학 특성 연구)

  • Woo, Chang-Woo;Ha, Kyung-Su;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.171-171
    • /
    • 2010
  • Electro-optic characteristics of liquid crystal display using fringe field switching(FFS) device depend on many parameters such as cell retardation, electrode structure, rubbing angle, cell gap and dielectric anisotropy. In this paper, the light efficiency of FFS mode will be analyzed to confirm the electro-optic characteristics according to positive dielectric anisotropy such as transmittance, operating voltage and response time.

  • PDF

Current-Driven Domain-Wall Depinning in Pt/CoFe/Pt Nanowires with Perpendicular Magnetic Anisotropy

  • Kim, Kab-Jin;Lee, Jae-Chul;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.101-103
    • /
    • 2009
  • The spin transfer torque efficiency was determined experimentally by observing the current-driven domainwall depinning of Pt/CoFe/Pt nanowires with perpendicular magnetic anisotropy. The depinning time was exponentially proportional to the applied magnetic field, and was well explained by the Neel-Brown formula. The depinning time and threshold magnetic field were varied considerably by injecting current into the nanowire. The spin transfer torque efficiency was estimated to be $(7.2{\pm}0.9){\times}10^{-15}Tm^2$/A from the linear dependence of the threshold current density with respect to the applied magnetic field.

A Modelling of magnetization reversal characteristics in magneto-optic memory system (광자기 기억장치에서의 자화반전 특성 모델링)

  • 한은실;이광형;조순철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1849-1860
    • /
    • 1994
  • Domain wall dynamics in thin film of amorphous Rare Earth-Transistion Metal alloys were investigated using numerical integration of the Landau-Lifshitz-Gilbert equation. The thin film was divided into a two-dimensional square lattice ($30\times30$) of dipoles. Nearest-neighbor exchange interaction magnetic anisotropy, applied magnetic field, and demagnetiing field of interacting anisotropy, applied magnetic field, and demagnetizing field of interacting dipoles were considered. It was assumed that the film had perfect uniaxial anisotropy in the perpendicular direction and the magnetization reversal existed in the film. The time of domain wall creation and the thickness of the wall were investigated. Also the motion of domain walls under an applied field was considered. Simulation results showed that the time of domain wall creation was decreased significantly and the average velocity of domain wall was increased somewhat when the demagnetizing field was considered.

  • PDF

Electric Field-Induced Modification of Magnetocrystalline Anisotropy in Transition-metal Films and at Metal-Insulator Interfaces

  • Nakamura, K.;Akiyama, T.;Ito, T.;Weinert, M.;Freeman, A.J.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.161-163
    • /
    • 2011
  • We report results of first principles calculations for effects of an external electric field (E-field) on the magnetocrystalline anisotropy (MCA) in transition-metal (Fe, Co, and Ni) monolayers and at metal-insulator (Fe/MgO) interfaces by means of full-potential linearized augmented plane wave method. For the monolayers, the MCA in the Fe monolayer (but not in the Co and Ni) is modified by the E-field, and a giant modification is achieved in the $Fe_{0.75}Co_{0.25}$. For the Fe/MgO interfaces, the ideal Fe/MgO interface gives rise to a large out-of plane MCA, and a MCA modification is induced when an E-field is introduced. However, the existence of an interfacial FeO layer between the Fe layer and the MgO substrate may play a key role in demonstrating an Efield-driven MCA switching, i.e., from out-of-plane MCA to in-plane MCA.

Effect of composition and structure on exchange anisotropy of IrxMn(100-x)/NiFe films

  • Suh, Su-jung;Park, Young-suk;Ro, Jae-chul;Yong-sung;Yoon, Dae-ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.91-95
    • /
    • 1998
  • Exchange anisotropy between IrMn antiferromagnetic layer and NiFe ferromagnetic layer has been studied in IrxMn(100-x)/NiFe/Buffr/Si(100) films deposited by D. C. magnetron sputtering method. Among Zr, Ta, and Cu used as buffer layer, Zr and Ta enhanced the fcc(111) texture of NiFe and IeMn layer, but Cu did not affect microstructure of those layer. Strong fcc(111) texture of IrMn layer was confirmed to be the origin of exchange anisotropy of IrMn. Ir composition control in IrMn layer showed that {{{{ gamma -phase}}}} IrMn is stabilized between 10 and 30 at % Ir, an 21 at. % Ir in IrMn layer was optimum composition that showed maximum exchange anisotropy field. above 200 ${\AA}$ thickness of IrMn, antiferromagnetic property is stabilzed to show saturated exchange anisotropy field. Based pressure was confirmed to be critical requisite in IrMn-based spin-valve GMR system.

  • PDF

SWR as Tool for Determination of the Surface Magnetic Anisotropy Energy Constant

  • Maksymowicz, L.J.;Lubecka, M.;Jablonski, R.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.105-111
    • /
    • 1998
  • The low energy excitations of spin waves (SWR) in thin films can be used for determination of the surface anisotropy constant and the nonhomogeneities of magnetization in the close-to-surface layer. The dispersion relation in SWR is sensitive on the geometry of experiment. We report on temperature dependence of surface magnetic anisotropy energy constant in magnetic semiconductor thin films of$ CdCr_{2-2x}In_{2x}Se_4$ at spin glass state. Samples were deposited by rf sputtering technique on Corning glass substrate in controlled temperature conditions. Coexistence of the infinite ferromagnetic network (IFN) and finite spin slusters (FSC) in spin glass state (SG) is know phenomena. Some behavior typical for long range magnetic ordering is expected in samples at SG state. The spin wave resonance experiment (microwave spectrometer at X-band) with excited surface modes was applied to describe the energy state of surface spins. We determined the surface magnetic anisotropy energy constant versus temperature using the surface inhomogeneities model of magnetic thin films. It was found that two components contribute to the surface magnetic anisotropy energy. One originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the stray field of the surface roughness. The second one comes from the demagnetizing field of close-to surface layer with grad M. Both term linearly decrease when temperature is increased from 5 to 123 K, but dominant contribution is from the first component.

  • PDF

Composition Dependence of Perpendicular Magnetic Anisotropy in Ta/CoxFe80-xB20/MgO/Ta (x=0, 10, 60) Multilayers

  • Lam, D.D.;Bonell, F.;Miwa, S.;Shiota, Y.;Yakushiji, K.;Kubota, H.;Nozaki, T.;Fukushima, A.;Yuasa, S.;Suzuki, Y.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.5-8
    • /
    • 2013
  • The perpendicular magnetic anisotropy of sputtered CoFeB thin films covered by MgO was investigated by vibrating sample magnetometry. Three different $Co_xFe_{80-x}B_{20}$ alloys were studied. Under out-of plane magnetic field, the saturation field was found to increase with increasing the Co content. The magnetization and interface anisotropy energy were obtained for all samples. Both showed a marked dependence on the MgO overlayer thickness. In addition, their variations were found to be non-monotonous as a function of the Co concentration.

Size Distribution and Temperature Dependence of Magnetic Anisotropy Constant in Ferrite Nanoparticles

  • Yoon, Sunghyun
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.11a
    • /
    • pp.104-105
    • /
    • 2012
  • The temperature dependence of the effective magnetic anisotropy constant K(T) of ferrite nanoparticles is obtained based on the measurements of SQUID magnetometry. For this end, a very simple but intuitive and direct method for determining the temperature dependence of anisotropy constant K(T) in nanoparticles is introduced in this study. The anisotropy constant at a given temperature is determined by associating the particle size distribution f(r) with the anisotropy energy barrier distribution $f_A(T)$. In order to estimate the particle size distribution f(r), the first quadrant part of the hysteresis loop is fitted to the classical Langevin function weight-averaged with the log?normal distribution, slightly modified from the original Chantrell's distribution function. In order to get an anisotropy energy barrier distribution $f_A(T)$, the temperature dependence of magnetization decay $M_{TD}$ of the sample is measured. For this measurement, the sample is cooled from room temperature to 5 K in a magnetic field of 100 G. Then the applied field is turned off and the remanent magnetization is measured on stepwise increasing the temperature. And the energy barrier distribution $f_A(T)$ is obtained by differentiating the magnetization decay curve at any temperature. It decreases with increasing temperature and finally vanishes when all the particles in the sample are unblocked. As a next step, a relation between r and $T_B$ is determined from the particle size distribution f(r) and the anisotropy energy barrier distribution $f_A(T)$. Under the simple assumption that the superparamagnetic fraction of cumulative area in particle size distribution at a temperature is equal to the fraction of anisotropy energy barrier overcome at that temperature in the anisotropy energy barrier distribution, we can get a relation between r and $T_B$, from which the temperature dependence of the magnetic anisotropy constant was determined, as is represented in the inset of Fig. 1. Substituting the values of r and $T_B$ into the $N{\acute{e}}el$-Arrhenius equation with the attempt time fixed to $10^{-9}s$ and measuring time being 100 s which is suitable for conventional magnetic measurement, the anisotropy constant K(T) is estimated as a function of temperature (Fig. 1). As an example, the resultant effective magnetic anisotropy constant K(T) of manganese ferrite decreases with increasing temperature from $8.5{\times}10^4J/m^3$ at 5 K to $0.35{\times}10^4J/m^3$ at 125 K. The reported value for K in the literatures is $0.25{\times}10^4J/m^3$. The anisotropy constant at low temperature region is far more than one order of magnitude larger than that at 125 K, indicative of the effects of inter?particle interaction, which is more pronounced for smaller particles.

  • PDF

Study on Retardation Value of Fringe-Field Driven Homogeneously Aligned Nematic Liquid Crystal Cell using Liquid Crystals with Positive Dielectric Anisotropy (유전율 이방성이 양인 액정을 이용한 Fringe-Field Driven 수평 배향셀의 위상지연값 연구)

  • 정송희;김향율;송성훈;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.305-310
    • /
    • 2004
  • We have studied the optimal phase retardation value of a homogeneously aligned liquid crystal (LC) driven by fringe-field when using the LC with positive dielectric anisotropy. In general, the transmittance of a homogeneous aligned LC cell under crossed polarizer is maximum when a twist angle of LC by in-plane rotation is 45$^{\circ}$ with polarizer and the cell retardation becomes λ/2. However, the device using the LC with positive dielectric anisotropy does not follow this since the degree of rotation of the LC is dependent on electrode position and in addition the LCs tilt up along the fringe-field. At the center of common and pixel electrode, the LC is most twisted around a middle position of a cell whereas at the edge position of pixel electrode, the LC is most twisted near bottom surface of a cell. Consequently, the optimal phase retardation of the device becomes much larger than λ/2 and the transmittance can be described using the combination of the in-plane switching and twisted nematic mode.