Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.2.161

Electric Field-Induced Modification of Magnetocrystalline Anisotropy in Transition-metal Films and at Metal-Insulator Interfaces  

Nakamura, K. (Department of Physics Engineering, Mie University)
Akiyama, T. (Department of Physics Engineering, Mie University)
Ito, T. (Department of Physics Engineering, Mie University)
Weinert, M. (Department of Physics, University of Wisconsin-Milwaukee)
Freeman, A.J. (Department of Physics and Astronomy, Northwestern University)
Publication Information
Abstract
We report results of first principles calculations for effects of an external electric field (E-field) on the magnetocrystalline anisotropy (MCA) in transition-metal (Fe, Co, and Ni) monolayers and at metal-insulator (Fe/MgO) interfaces by means of full-potential linearized augmented plane wave method. For the monolayers, the MCA in the Fe monolayer (but not in the Co and Ni) is modified by the E-field, and a giant modification is achieved in the $Fe_{0.75}Co_{0.25}$. For the Fe/MgO interfaces, the ideal Fe/MgO interface gives rise to a large out-of plane MCA, and a MCA modification is induced when an E-field is introduced. However, the existence of an interfacial FeO layer between the Fe layer and the MgO substrate may play a key role in demonstrating an Efield-driven MCA switching, i.e., from out-of-plane MCA to in-plane MCA.
Keywords
magnetocrystalline anisotropy; external electric field; transition-metal films; metal-insulator interfaces; first principles calculations;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 K. Nakamura, T. Akiyama, T. Ito, M. Weinert, and A. J. Freeman, Phys. Rev. B 81, 220409R (2010).   DOI   ScienceOn
2 E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev B 24, 864 (1981).   DOI
3 M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B. 26, 4571 (1982).   DOI
4 U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).   DOI   ScienceOn
5 M. Weinert, G. Schneider, R. Podloucky, and J. Redinger, J. Phys.: Condens. Matter 21, 084201 (2009).   DOI   ScienceOn
6 M. Weinert, R. E. Watson, and J. W. Davenport, Phys. Rev. B 32, 2115 (1985).   DOI   ScienceOn
7 G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 41, 11919 (1990).   DOI   ScienceOn
8 D. S. Wang, R. Wu, and A. J. Freeman, Phys. Rev. B 47, 14932 (1993).   DOI   ScienceOn
9 C. Li and A. J. Freeman, Phys. Rev. B 43, 780 (1991).   DOI   ScienceOn
10 M. Weisheit, S. Fahler, A. Marty, Y. Souche, C. Poinshignon, and D. Givord, Science 315, 349 (2007).   DOI   ScienceOn
11 T. Maruyama, K. Ohta, T. Nozaki, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nature Nanotech. 4, 158 (2009).   DOI   ScienceOn
12 Y. Shiota, T Maruyama, T. Nozaki, T. Shinjyo, M. Shiraishi, and Y. Suzuki, Appl. Phys. Express 2, 063001 (2009).   DOI
13 C.-G. Duan, J. P. Velev, R. F. Sabirianov, Z. Zhu, J. Chu, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 101, 137201 (2008).   DOI   ScienceOn
14 K. Nakamura, R. Shimabukuro, Y. Fujiwara, T. Akiyama, T. Ito, and A. J. Freeman, Phys. Rev. Lett. 102, 187201 (2009).   DOI   ScienceOn
15 M. Tsujikawa and T. Oda, Phys. Rev. Lett. 102, 247203 (2009).   DOI   ScienceOn
16 K. Nakamura, R. Shimabukuro, T. Akiyama, T. Ito, and A. J. Freeman, Phys. Rev. B 80, 172402 (2009).   DOI   ScienceOn
17 S. D. Bader and S. S. P. Parkin, Annu. Rev. Condens. Matter Phys. 1, 71 (2010)   DOI
18 T. Urano and T. Kanaji, J. Phys. Soc. Jpn. 57, 3403 (1988).   DOI
19 H. L. Meyerheim, R. Popescu, N. Jedrecy, M. Vedpathak, M. Sauvage-Simkin, R. Pinchaux, B. Heinrich, and J. Kirschner, Phys. Rev. B 65, 144433 (2002).   DOI   ScienceOn
20 S. D. Bader, Rev. Mod. Phys. 78, 1 (2006)   DOI   ScienceOn