• 제목/요약/키워드: Animal Nutrition

검색결과 3,033건 처리시간 0.031초

Dietary phosphorus deficiency impaired growth, intestinal digestion and absorption function of meat ducks

  • Xu, Huimin;Dai, Shujun;Zhang, Keying;Ding, Xuemei;Bai, Shiping;Wang, Jianping;Peng, Huanwei;Zeng, Qiufeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1897-1906
    • /
    • 2019
  • Objective: An experiment was conducted to investigate the effects of dietary non-phytate phosphorus (nPP) deficiency on intestinal pH value, digestive enzyme activity, morphology, nutrient utilization, and gene expression of NaPi-IIb in meat ducks from 1 to 21 d of age. Methods: A total of 525 one-d-old Cherry Valley ducklings were fed diets (with 7 pens of 15 ducklings, or 105 total ducklings, on each diet) with five levels of nPP (0.22%, 0.34%, 0.40%, 0.46%, or 0.58%) for 21 d in a completely randomized design. Five experimental diets contained a constant calcium (Ca) content of approximately 0.9%. Body weight (BW), body weight gain (BWG), feed intake (FI), and feed to gain ratio (F:G) were measured at 14 and 21 d of age. Ducks were sampled for duodenum and jejunum digestion and absorption function on 14 and 21 d. Nutrient utilization was assessed using 25- to 27-d-old ducks. Results: The results showed ducks fed 0.22% nPP had lower (p<0.05) growth performance and nutrient utilization and higher (p<0.05) serum Ca content and alkaline phosphatase (ALP) activity. When dietary nPP levels were increased, BW (d 14 and 21), BWG and FI (all intervals), and the serum phosphorus (P) content linearly and quadratically increased (p<0.05); and the jejunal pH value (d 14), duodenal muscle layer thickness (d 14), excreta dry matter, crude protein, energy, Ca and total P utilization linearly increased (p<0.05); however, the serum ALP activity, jejunal $Na^+-K^+$-ATPase activity, and duodenal NaPi-IIb mRNA level (d 21) linearly decreased (p<0.05). Conclusion: The results indicated that ducks aged from 1 to 21 d fed diets with 0.22% nPP had poor growth performance related to poor intestinal digestion and absorption ability; but when fed diets with 0.40%, 0.46%, and 0.58% nPP, ducks presented a better growth performance, intestinal digestion and absorption function.

Metabolomics Analysis of the Beef Samples with Different Meat Qualities and Tastes

  • Jeong, Jin Young;Kim, Minseok;Ji, Sang-Yun;Baek, Youl-Chang;Lee, Seul;Oh, Young Kyun;Reddy, Kondreddy Eswar;Seo, Hyun-Woo;Cho, Soohyun;Lee, Hyun-Jeong
    • 한국축산식품학회지
    • /
    • 제40권6호
    • /
    • pp.924-937
    • /
    • 2020
  • The purpose of this study was to investigate the meat metabolite profiles related to differences in beef quality attributes (i.e., high-marbled and low-marbled groups) using nuclear magnetic resonance (NMR) spectroscopy. The beef of different marbling scores showed significant differences in water content and fat content. High-marbled meat had mainly higher taste compounds than low-marbled meat. Metabolite analysis showed differences between two marbling groups based on partial least square discriminant analysis (PLS-DA). Metabolites identified by PLS-DA, such as N,N-dimethylglycine, creatine, lactate, carnosine, carnitine, sn-glycero-3-phosphocholine, betaine, glycine, glucose, alanine, tryptophan, methionine, taurine, tyrosine, could be directly linked to marbling groups. Metabolites from variable importance in projection plots were identified and estimated high sensitivity as candidate markers for beef quality attributes. These potential markers were involved in beef taste-related pathways including carbohydrate and amino acid metabolism. Among these metabolites, carnosine, creatine, glucose, and lactate had significantly higher in high-marbled meat compared to low-marbled meat (p<0.05). Therefore, these results will provide an important understanding of the roles of taste-related metabolites in beef quality attributes. Our findings suggest that metabolomics analysis of taste compounds and meat quality may be a powerful method for the discovery of novel biomarkers underlying the quality of beef products.

Effects of different copper sources (inorganic and organic) on the growth performance, fecal excretion, intestinal morphology, and health in growing pigs

  • Kim, Minji;Jung, Hyunjung;Seong, Pil-Nam;Jeong, Jin Young;Baek, Youl-Chang;Park, Seol Hwa;Ryu, Chae Hwa;Kim, Ki Hyun;Chun, Ju Lan;Oh, Sang-Ik;Kim, Byeonghyeon
    • 농업과학연구
    • /
    • 제48권3호
    • /
    • pp.447-454
    • /
    • 2021
  • This study was conducted to evaluate the effects of different copper sources (inorganic and organic) on the growth performance, fecal copper excretion, intestinal morphology, and health in growing pigs. A total of 40 growing pigs (30.22 ± 1.92 kg) were randomly assigned to 5 dietary treatments: a basal control diet (CON), 4 experimental diets supplemented with either copper sulfate (CuSO4), Cu-glycine complex (CuGly), Cu-amino acid complex (CuAA), or Cu-hydroxy-4-methylthio butanoate chelate complex (CuHMB) at 100 ppm, respectively. At the end of the study (28 days), fecal and blood samples were collected, and the pigs were slaughtered to determine the intestinal morphology. During the 28 days of the experimental period, pigs fed the inorganic and organic copper showed a higher average daily gain (p < 0.01) and gain feed ratio (p < 0.01). There were no differences in mineral concentrations of the serum; however, the copper concentration of the feces was lower (p < 0.01) in the CuAA and CuHMB groups. The intestinal morphology and blood profiles did not significantly differ between the groups. In conclusion, the organic copper sources (CuAA and CuHMB) can be used as a growth promoter to replace the CuSO4 without any negative effects on health in growing pigs and to reduce fecal copper excretion.

In Vitro Evaluation of Swine-Derived Lactobacillus reuteri: Probiotic Properties and Effects on Intestinal Porcine Epithelial Cells Challenged with Enterotoxigenic Escherichia coli K88

  • Wan, Zhilin;Wang, Li;Chen, Zhuang;Ma, Xianyong;Yang, Xuefen;Zhang, Jian;Jiang, Zongyong
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.1018-1025
    • /
    • 2016
  • Probiotics are considered as the best effective alternatives to antibiotics. The aim of this study was to characterize the probiotic potential of lactobacilli for use in swine farming by using in vitro evaluation methods. A total of 106 lactic acid bacterial isolates, originating from porcine feces, were first screened for the capacity to survive stresses considered important for putative probiotic strains. Sixteen isolates showed notable acid and bile resistance, antibacterial activity, and adherence to intestinal porcine epithelial cells (IPEC-1). One isolate, LR1, identified as Lactobacillus reuteri, was selected for extensive study of its probiotic and functional properties in IPEC-1 cell models. L. reuteri LR1 exhibited good adhesion to IPEC-1 cells and could inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells. L. reuteri LR1 could also modulate transcript and protein expression of cytokines involved in inflammation in IPEC-1 cells; the Lactobacillus strain inhibited the ETEC-induced expression of proinflammatory transcripts (IL-6 and TNF-α) and protein (IL-6), and increased the level of anti-inflammatory cytokine (IL-10). Measurement of the permeation of FD-4 showed that L. reuteri LR1 could maintain barrier integrity in monolayer IPEC-1 cells exposed to ETEC. Immunolocalization experiments showed L. reuteri LR1 could also prevent ETEC-induced tight junction ZO-1 disruption. Together, these results indicate that L. reuteri LR1 exhibits desirable probiotic properties and could be a potential probiotic for use in swine production.

Relationships among bedding materials, bedding bacterial composition and lameness in dairy cows

  • Li, Han;Wang, Xiangming;Wu, Yan;Zhang, Dingran;Xu, Hongyang;Xu, Hongrun;Xing, Xiaoguang;Qi, Zhili
    • Animal Bioscience
    • /
    • 제34권9호
    • /
    • pp.1559-1568
    • /
    • 2021
  • Objective: Bedding materials directly contact hooves of dairy cows and they may serve as environmental sources of lameness-associated pathogen. However, the specific composition of bacteria hidden in bedding materials is still not clear. The aim of this study was to determine the effect bedding material and its bacterial composition has on lameness of Holstein heifers. Methods: Forty-eight Holstein heifers with similar body weights were randomly assigned into three groups including sand bedding (SB), concrete floor (CF), and compost bedding (CB). Hock injuries severity and gait performance of dairy cows were scored individually once a week. Blood samples were collected at the end of the experiment and bedding material samples were collected once a week for Illumina sequencing. Results: The CF increased visible hock injuries severity and serum biomarkers of joint damage in comparison to SB and CB groups. Besides, Illumina sequencing and analysis showed that the bacterial community of CB samples had higher similarity to that of SB samples than CF samples. Bacteria in three bedding materials were dominated by gastrointestinal bacteria and organic matter-degrading bacteria, such as Actinobacteria, Firmicutes, and norank JG30-KF-cM45. Lameness-associated Spirochaetaceae and Treponeme were only detected in SB and CB samples with a very low relative abundance (0% to 0.08%). Conclusion: The bacterial communities differed among bedding materials. However, the treponemes pathogens involved in the pathogenesis of lameness may not be a part of microbiota in bedding materials of dairy cows.

Comparison of cecal microbiota composition in hybrid pigs from two separate three-way crosses

  • Yang, Yuting;Shen, Liyan;Gao, Huan;Ran, Jinming;Li, Xian;Jiang, Hengxin;Li, Xueyan;Cao, Zhenhui;Huang, Ying;Zhao, Sumei;Song, Chunlian;Pan, Hongbin
    • Animal Bioscience
    • /
    • 제34권7호
    • /
    • pp.1202-1209
    • /
    • 2021
  • Objective: The intestinal microbiota plays an important role in host physiology, metabolism, immunity, and behavior. And host genetics could influence the gut microbiota of hybrid animals. The three-way cross model is commonly utilized in commercial pig production; however, the use of this model to analyse the gut microbial composition is rarely reported. Methods: Two three-way hybrid pigs were selected, with Saba pigs as the starting maternal pig: Duroc× (Berkshire×Saba) (DBS) pig, Berkshire×(Duroc×Saba) (BDS) pig. One hundred pigs of each model were reared from 35 days (d) to 210 d. The body weight or feed consumption of all pigs were recorded and their feed/gain (F/G) ratio was calculated. On day 210, 10 pigs from each three-way cross were selected for slaughter, and cecal chyme samples were collected for 16S rRNA gene sequencing. Results: The final body weight (FBW) and average daily gain (ADG) of DBS pigs were significantly higher than those of BDS pigs (p<0.05), while the F/G ratios of DBS pigs were significantly lower than those of BDS pigs (p<0.05). The dominant phyla in DBS and BDS pigs were Bacteroidetes (55.23% vs 59%, respectively) and Firmicutes (36.65% vs 34.86%, respectively) (p>0.05). At the genus level, the abundance of Prevotella, Roseburia, and Anaerovibrio in DBS pigs was significantly lower than in BDS pigs (p<0.01). The abundance of Eubacterium, Clostridium XI, Bacteroides, Methanomassiliicoccus, and Parabacteroides in DBS pigs was significantly higher than in BDS pigs (p<0.05). The FBWs and ADGs were positively correlated with Bacteroides, ClostridiumXI, and Parabacteroides but negatively correlated with the Prevotella, Prevotella/Bacteroides (P/B) ratio, Roseburia, and Anaerovibrio. Conclusion: These results indicated that host genetics affect the cecal microbiota composition and the porcine gut microbiota is associated with growth performance, thereby suggesting that gut microbiota composition may be a useful biomarker in porcine genetics and breeding.

Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health - A review

  • Ali, Qasim;Ma, Sen;La, Shaokai;Guo, Zhiguo;Liu, Boshuai;Gao, Zimin;Farooq, Umar;Wang, Zhichang;Zhu, Xiaoyan;Cui, Yalei;Li, Defeng;Shi, Yinghua
    • Animal Bioscience
    • /
    • 제35권10호
    • /
    • pp.1461-1478
    • /
    • 2022
  • The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the gut epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.

The effects of plant extracts on lipid metabolism of chickens - A review

  • Xuedong Ding;Ilias Giannenas;Ioannis Skoufos;Jing Wang;Weiyun Zhu
    • Animal Bioscience
    • /
    • 제36권5호
    • /
    • pp.679-691
    • /
    • 2023
  • The fat deposition is an important factor affecting chicken meat quality, which is closely related to lipid metabolism of chickens. Therefore, it is important to regulate the lipid metabolism of chickens to improve the chicken meat quality. Plant extracts have special regulatory effects on animal's growth and health and have been widely used in chicken breeding. Some plant extracts have been reported to have functions of changing the fatty acid composition, reducing abdominal fat percentage, and enhancing the intramuscular fat content of chickens by improving the antioxidant capacity, regulating the expression of genes, enzymes, and signaling pathways related to lipid metabolism, modulating intestinal microbiota, affecting hormones level, and regulating DNA methylation. This paper reviewed the application and mechanism of plant extracts on regulating lipid metabolism of chickens to provide a reference for the further application of plant extracts in chicken breeding.

The effect of dietary asparagine supplementation on energy metabolism in liver of weaning pigs when challenged with lipopolysaccharide

  • Kang, Ping;Liu, Yulan;Zhu, Huiling;Zhang, Jing;Shi, Haifeng;Li, Shuang;Pi, Dinan;Leng, Weibo;Wang, Xiuying;Wu, Huanting;Hou, Yongqing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.548-555
    • /
    • 2018
  • Objective: This experiment was conducted to investigate whether asparagine (Asn) could improve liver energy status in weaning pigs when challenged with lipopolysaccharide. Methods: Forty-eight weaned pigs ($Duroc{\times}Large\;White{\times}Landrace$, $8.12{\pm}0.56kg$) were assigned to four treatments: i) CTRL, piglets received a control diet and injected with sterile 0.9% NaCl solution; ii) lipopolysaccharide challenged control (LPSCC), piglets received the same control diet and injected with Escherichia coli LPS; iii) lipopolysaccharide (LPS)+0.5% Asn, piglets received a 0.5% Asn diet and injected with LPS; and iv) LPS+1.0% Asn, piglets received a 1.0% Asn diet and injected with LPS. All piglets were fed the experimental diets for 19 d. On d 20, the pigs were injected intraperitoneally with Escherichia coli LPS at $100{\mu}g/kg$ body weights or the same volume of 0.9% NaCl solution based on the assigned treatments. Then the pigs were slaughtered at 4 h and 24 h after LPS or saline injection, and the liver samples were collected. Results: At 24 h after LPS challenge, dietary supplementation with 0.5% Asn increased ATP concentration (quadratic, p<0.05), and had a tendency to increase adenylate energy charges and reduce AMP/ATP ratio (quadratic, p<0.1) in liver. In addition, Asn increased the liver mRNA expression of pyruvate kinase, pyruvate dehydrogenase, citrate synthase, and isocitrate dehydrogenase ${\beta}$ (linear, p<0.05; quadratic, p<0.05), and had a tendency to increase the mRNA expression of hexokinase 2 (linear, p<0.1). Moreover, Asn increased liver phosphorylated AMP-activated protein kinase (pAMPK)/total AMP-activated protein kinase (tAMPK) ratio (linear, p<0.05; quadratic, p<0.05). However, at 4 h after LPS challenge, Asn supplementation had no effect on these parameters. Conclusion: The present study indicated that Asn could improve the energy metabolism in injured liver at the late stage of LPS challenge.

Effect of Pesticide Residue in Muscle and Fat Tissue of Pigs Treated with Propiconazole

  • Jeong, Jin Young;Kim, Byeonghyeon;Ji, Sang Yun;Baek, Youl Chang;Kim, Minji;Park, Seol Hwa;Kim, Ki Hyun;Oh, Sang-Ik;Kim, Eunju;Jung, Hyunjung
    • 한국축산식품학회지
    • /
    • 제41권6호
    • /
    • pp.1022-1035
    • /
    • 2021
  • This study estimated the effect of exposure to propiconazole through implementation and residues in finishing pigs. We analyzed the expression of fibrosis-related genes and performed histological analysis of the blood, liver, kidney, muscle, ileum, and fat tissues. The animals were exposed for 28 d to different concentrations of propiconazole (0.09, 0.44, 0.88, 4.41, and 8.82 mg/kg bw/d). Quantitative, gene expression, and histological analyses in tissues were performed using liquid chromatography mass spectrometry, real-time PCR, and Masson's trichrome staining, respectively. Final body weight did not differ among groups. However, genes involved in fibrosis were significantly differentially regulated in response to propiconazole concentrations. Glucose, alanine aminotransferase, and total bilirubin levels were significantly increased compared with those in the control group, while alkaline phosphatase level was decreased (p<0.05) after exposure to propiconazole. The residue limits of propiconazole were increased in the finishing phase at 4.41 and 8.82 mg/kg bw/d. The liver, kidney, and ileum showed blue staining after propiconazole treatment, confirmed by Masson's trichrome staining. In conclusion, these findings suggest that propiconazole exposure disturbs the expression of fibrosis-related genes. This study on dietary propiconazole in pigs can provide a basis for determining maximum residue limits and a better understanding of metabolism in pigs and meat products.