• Title/Summary/Keyword: Angular information

Search Result 445, Processing Time 0.025 seconds

A Realization of Biquadratic Voltage Transfer Functions Using Three CCIIs

  • Higashimura, Masami;Fukui, Yutaka
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.151-154
    • /
    • 2000
  • This paper proposes a novel circuit configuration realizing biquadratic voltage transfer functions using three CCIIs and six passive elements. The circuits realize high-pass, band-pass, low-pass, band-stop and all-pass functions by selecting input voltages. The circuit has low passive sensitivities and permits orthogonal adjustment of quality factor Q and cutoff angular frequency $\omega$$\sub$o/. The effects of non-ideal CCIIs on biquadratic transfer functions are also given.

  • PDF

On the Size of Quantum Dots with Bound Hydrogenic Impurity States

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.315-318
    • /
    • 2009
  • Some particular bound state energies of an electron, under Coulomb potential field, confined in a two-dimensional circle and a three-dimensional sphere are analytically derived. The derivation shows that the electron cannot be bound in a negative energy state when the circle (or sphere) is smaller than a certain critical size. The critical size dependency on the strength of Coulomb potential and the angular momentum of the electron is also analytically derived. This system mimics quantum dots. Therefore the derivation provides new information on a minimum critical size of quantum dots with hydrogenic impurity.

Synchronization System of Robot-centered Information for Context Understanding (상황 이해를 위한 로봇 중심 정보 동기화 시스템)

  • Lim, G.H.;Lee, S.;Suh, I.H.;Kim, H.S.;Son, J.H.
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.933-934
    • /
    • 2006
  • High level perceptual tasks such as context understanding, SLAM and object recognition are essential for intelligent robot to provide services for human supports. Those intelligent robots often use camera sensor for vision information, sonar or laser sensor for range information, encoder for angular velocity of wheel and so on. The information is generated at different time intervals by the different H/W devices and S/W algorithms. The generation of high level information requires the specific mixture of low level information. And the information should be represented to be useful for robots to use in their ecological niche. In conventional robot systems, perceptual module requires the resource to use by tightly coupling whenever it is needed. So the resource and information cannot be easily shared and even could be invalid for the delayed information. In this paper, we propose a synchronization system of robot-centered information for context understanding. Our system represents information for the robot capacity and synchronizes the information that is asynchronously generated, where is employed the black-board architecture.

  • PDF

FPGA Implementation of RVDT Digital Signal Conditioner with Phase Auto-Correction based on DSP (RVDT용 DSP 기반 위상 자동보정 디지털 신호처리기 FPGA 구현)

  • Kim, Sung-mi;Seo, Yeon-ho;Jin, Yu-rin;Lee, Min-woong;Cho, Seong-ik;Lee, Jong-yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1061-1068
    • /
    • 2017
  • A RVDT is a sensor that measures angular displacement and the output signal of RVDT is a DSBSC-AM signal. For this reason, a DSBSC-AM demodulation processor is required to determine the angular displacement from the output signal. In this paper, DADC(Digital Angle to DC) which extracts the angular displacement from the output signal of a RVDT is implemented based-on modified Costas Loop usually used in the demodulation of DSBSC-AM signal by using FPGA. DADC can used with both 4-wire and 5-wire RVDTs and can exactly compensate the phase difference between the input excitation and output signals of a RVDT unlike the conventional analog RVDT signal conditioners which require external components. Since digital signal processing technique that can enhance the linearity is exploited, DADC shows 0.035% linearity error, which is smaller than 0.005% that of a conventional analog signal conditioner. The DADC are tested in an integrated experimental environment which includes a commercial RVDT sensor, ADC and an analog output block.

Illumination Estimation Based on Nonnegative Matrix Factorization with Dominant Chromaticity Analysis (주색도 분석을 적용한 비음수 행렬 분해 기반의 광원 추정)

  • Lee, Ji-Heon;Kim, Dae-Chul;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.89-96
    • /
    • 2015
  • Human visual system has chromatic adaptation to determine the color of an object regardless of illumination, whereas digital camera records illumination and reflectance together, giving the color appearance of the scene varied under different illumination. NMFsc(nonnegative matrix factorization with sparseness constraint) was recently introduced to estimate original object color by using sparseness constraint. In NMFsc, low sparseness constraint is used to estimate illumination and high sparseness constraint is used to estimate reflectance. However, NMFsc has an illumination estimation error for images with large uniform area, which is considered as dominant chromaticity. To overcome the defects of NMFsc, illumination estimation via nonnegative matrix factorization with dominant chromaticity image is proposed. First, image is converted to chromaticity color space and analyzed by chromaticity histogram. Chromaticity histogram segments the original image into similar chromaticity images. A segmented region with the lowest standard deviation is determined as dominant chromaticity region. Next, dominant chromaticity is removed in the original image. Then, illumination estimation using nonnegative matrix factorization is performed on the image without dominant chromaticity. To evaluate the proposed method, experimental results are analyzed by average angular error in the real world dataset and it has shown that the proposed method with 5.5 average angular error achieve better illuminant estimation over the previous method with 5.7 average angular error.

The Effect of Context on Mental Rotation (맥락 정보가 심적 회전에 미치는 영향)

  • Jung, Il-Yung;Lee, Chang-Hyun;Lee, Mi-Sun;Chong, Sang-Chul
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.4
    • /
    • pp.555-571
    • /
    • 2009
  • This study investigated whether contexts could influence the speed of mental rotation. Experiment 1 investigated whether the angle of neighboring letters influenced the recognition of the target letter. Reaction time of target recognition increased linearly, as angular differences between the angle of the target letter and that of neighboring letters increased. Moreover, this trend was more pronounced when the target and neighboring letters made a word as compared to when they did not. Experiment 2 examined the effects of practice difficulty on mental rotation. Reaction time again increased linearly with the degree of angular rotation. However, there were no significant differences between the easy and the difficult conditions. These results suggest that contextual information is important in mental rotation.

  • PDF

Image Retrieval using Local Color Histogram and Shape Feature (지역별 색상 분포 히스토그램과 모양 특징을 이용한 영상 검색)

  • 정길선;김성만;이양원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.50-54
    • /
    • 1999
  • This paper is proposed to image retrieval system using color and shape feature. Color feature used to four maximum value feature among the maximum value extracted from local color distribution histogram. The preprocessing of shape feature consist of edge extraction and weight central point extraction and angular sampling. The sum of distance from weight central point to contour and variation and max/min used to shape feature. The similarity is estimated compare feature of query image with the feature of images in database and the candidate of image is retrieved in order of similarity. We evaluate the effectiveness of shape feature and color feature in experiment used to two hundred of the closed image. The Recall and the Precision is each 0.72 and 0.53 in the result of average experiment. So the proposed method is presented useful method.

  • PDF

Multiple Target DOA Tracking Algorithm Applicable to Arbitrarily Shaped Array (임의형상 배열센서에 적용 가능한 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • Ryu et al. proposed a multiple target DOA tracking algorithm using a linear sensor array. In Ryu's algorithm first, the signal subspace is estimated using sensor output and the angular innovations of targets are extracted from the estimated signal subspace. Next, the DOA's of targets are tracked using the angular innovations as the inputs of Kalman filters. Ryu's algorithm has good features that it has no data association problem and is efficient. However, Ryu's algorithm can't be a lied to an arbitrarily shaped array because it was proposed using linear sensor array. Actually, when the sensor array is used in the various application fields, sensors have a position error. Therefore, the sensor array can be an arbitrarily shaped array. In this paper, we propose a multiple target DOA tracking algorithm applicable to an arbitrarily shaped array, and it sustains the good features of Ryu's algorithm.

The Study of Methods for Improve the Linearity of the Walking Assistant Robot to Move on Lateral Slopes (횡단경사면에서 지능형 보행보조로봇의 직진성 향상 방안 연구)

  • Lee, Won-Young;Eom, Su-Hong;Jang, Mun-Suck;Kwon, O-Sang;Lee, Eung-Hyuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.261-268
    • /
    • 2013
  • In this paper, we propose the algorithm that improves the linearity of the walking assistant robot on lateral slopes. The walking assistant robot goes out of the course due to the rotational moment which is caused by the weight of the robot and the slope. To compensate this, we give the weight to each driving axle after comparing the real rotational angular velocity with the target rotational angular velocity which is entered by an user. The results of applying the algorithm to the real walking assistant robot show that the yaw axis deviation of the robot without the algorithm diverges, but the yaw axis deviation of the robot with the algorithm lies within 20cm, which can be recognized as stable. In addition, the changing rate of the course deviation is stabilized and shows no more course deviation, after moving 300cm.