• Title/Summary/Keyword: Angular displacement

Search Result 211, Processing Time 0.027 seconds

Effects of induced stereoacuity reduction on obstacle crossing (입체시력 감소가 장애물 보행에 미치는 영향)

  • Woo, Byung-Hoon;Sul, Jeong-Dug
    • 한국체육학회지인문사회과학편
    • /
    • v.54 no.5
    • /
    • pp.829-840
    • /
    • 2015
  • The purpose of this study was to investigated into the kinematics and ground reaction force for gait on induced stereoacuity in normal subjects with normal sight. Eighteen subjects who passed the stereoacuity testing were participated in the experiment(age: 22.1±2.7 years, height: 176.8±4.4 cm, weight: 67.6±5.8 kg). The study method adopted 3D analysis with six cameras and ground reaction force with two force-plates. The results were as follows; In gait velocity, obstacle crossing gait was slower than flat gait. In angular displacement of hip joint, mostly obstacle crossing gait was more flexed than flat gait. In angular displacement of knee joint, obstacle crossing gait was more flexed than flat gait, and stereoacuity reduction gait in TO and FC2 were more flexed than normal vision gait. In angular displacement of ankle joint, obstacle crossing gait in FC2 was more flexed than flat gait. In trunk tilt, obstacle crossing gait in MSt, TO and MSw were more extended than flat gait. In GRF, there was no significant in Fx, obstacle crossing gait in right and left foot were bigger propulsion force than flat gait, obstacle crossing gait in right and left foot were bigger braking force than normal vision gait in Fy, and obstacle crossing gait in right and left foot were bigger than flat gait in peak F1 and peak F2 of Fz, and stereoacuity reduction gait in right foot was lower than normal vision gait in valley force of Fz.

Numerical Study on Energy Absorption of a Floater for Design of Wave Energy Convertor in Ocean (해양 파력 발전 시스템 설계를 위한 부유체 에너지 흡수에 관한 기초연구)

  • Li, Kui Ming;Parthasarathy, Nanjundan;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.635-644
    • /
    • 2012
  • In order to design a wave energy generating system, a 6-DOF analysis technique is applied to the three-Dimensional CFD analysis on of a floating body and the behavior is interpreted according to the nature of the incoming wave. A wave period of 5.5s & amplitude of 0.57m from Marado is chosen. 12 case of natural pitching period from 1.25 to 2.8s has been modeled. The relation between tuning factor & pitch angle for the waves generated is compared to analyze the effects of energy absorption variables, namely mass moment of inertia, angular velocity and angular acceleration. From the results obtained, we conclude that model L is the maximum power absorbed, 6kW approximately. A maximum pitch angle of 1.91 degree was attained by Model F, and the maximum displacement of nearly 0.7m was attained by Model L among models D, F and L.

An Analysis of Thermal Stress and Angular Distortion in Bead-on-Plate Welding Incorporating Constrained Boundary Conditions (판재의 비드 용접에서 구속경계조건을 적용한 열응력 및 각변형 해석)

  • 배강열;최태완
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.104-115
    • /
    • 1999
  • There have been many studies on the two dimensional thermo-elasto-plastic analysis in welding process, mostly from viewpoint of residual stresses. In this study, the temperature distribution, transient thermal stress, and angular distortion during bead-on-plate gas metal arc welding of rectangular plates were analyzed by using the finite element method. A nonlinear heat transfer analysis was first performed by taking account of the temperature-dependent material properties and convection heat losses on the surface. This was followed by a thermo-elasto-plastic stresses and distortion analysis that incorporates the constrained boundary condition of the two dimensional solution domain to get the three dimensional size effect of the plate. The constrained boundary conditions adopted in this study were the constant displacement condition over the whole two dimensional section for axial movement in the welding direction, and the force boundary condition for rotational movementof the domain around the axis of the welding direction. It could be revealed that the theoretical predictions of the angular distortion have an improved agreement with the experimentally obtained data presented in the previous study.

  • PDF

Thermal characteristics according to the preload and cooling conditions for the high frequency motor spindle with grease lubrication (그리스 윤활 고주파 모터 주축의 예압과 냉각에 따른 열특성)

  • 최대봉;김수태;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.439-444
    • /
    • 2004
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and ball bearings. In this study. the effects of bearing preload and cooling for high speed spindle with high frequency motor are investigated. A high speed spindle is composed of angular contact ball bearings, high frequency motor, grease lubrication, oil jacket cooling, and so on. Heat generation of the bearing and the high frequency motor are estimated from the theoretical and experimental data. The thermal analyses of high speed spindle to minimize the thermal effect and maximize the cooling effect are carried out under the various cooling conditions and preload. Method of variable bearing preload and cooling can be useful to design the high speed motor spindle. The results show that the optimal preload and cooling are very effective to minimize the thermal displacement by motor and ball bearing.

  • PDF

Motion of a System with Varying Damping Subject to Harmonic Force - Analytical Analysis (변화하는 감쇠를 갖는 계가 조화력을 받을 때의 운동 - 이론적 해석)

  • Park, O-Cheol;Lee, Gun-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.898-902
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$ respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$ and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. Part of these simulation results are proved analytically.

  • PDF

Control of a Balance-Beam with Unknown Loads Using the Restoration Angle of a Gimbal

  • Yi Keon-Young;Kim Yong-Jun;Chung Sam-Yong;Han Song-Soo;Lee Sang-Heon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.524-528
    • /
    • 2006
  • A controller built with the gyro effect for a balance-beam can freely control the attitude of an unstructured object by changing the position of an inner gimbal. In this paper, we propose a new balance-beam controller that can detect the inertia of the load to limit the velocity of the load commanded by a user. We found that when there was smaller load inertia, a larger restoration displacement occurred. Therefore, the load can be identified by issuing a predefined command to measure the restoration displacement, which enables us to construct a controller that can limit the angular velocity of the load by planning the motion. Experimental results show the performance of the controller with different loads.

Control and data analysis of a measuring machine for cams (캠 형상 전용 측정기 제어 및 해석 S/W 개발)

  • 최동우;강재관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.150-153
    • /
    • 1997
  • In this paper, a control and data analysis S/W of a dedicated measuring machine for cams is developed. A rotary encoder is employed to measure the angular displacement of the motor, and a linear scale does the linear displacement of the prove. The design and measuring data are interpolated by cubic spline curves respectively to compute the error which is defined by the maximum distance between two curves. Further, optimization module to find the exact error is also developed to remove the error occurred due initial measuring position. The developed system takes only 6 minutes to measure the cam and to analyze the measuring data while the CMM takes about 1 hours even with a skilled operator.

  • PDF

Real-time Measurement and Compensation of Motion Errors Using Extended Twyman-Green Interferometry (확장 트와이만-그린 간섭계를 이용한 운동 오차의 실시간 측정 및 보상)

  • 오정석;배은덕;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.288-291
    • /
    • 2003
  • This paper presents an extended Twyman-Green interferometry that enables simultaneous and real-time measurement of 5-DOF motion errors of the translational moving stage. This method uses a null balancing technique in which two plane mirrors are used as target mirrors to generate an interferometric fringe utilizing the optical principles of Twyman-Green interferometry. Fringe is detected by 2D photodiode array for high-speed measurement. Errors are then independently suppressed by activation of piezoelectric actuators through real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with motion errors about 10 nm in linear displacement, 0.15 arcsec in angular displacement

  • PDF

Design and investigation of a shape memory alloy actuated gripper

  • Krishna Chaitanya, S.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.541-558
    • /
    • 2014
  • This paper proposes a new design of shape memory alloy (SMA) wire actuated gripper for open mode operation. SMA can generate smooth muscle movements during actuation which make them potentially good contenders in designing grippers. The principle of the shape memory alloy gripper is to convert the linear displacement of the SMA wire actuator into the angular displacement of the gripping jaw. Steady state analysis is performed to design the wire diameter of the bias spring for a known SMA wire. The gripper is designed to open about an angle of $22.5^{\circ}$ when actuated using pulsating electric current from a constant current source. The safe operating power range of the gripper is determined and verified theoretically. Experimental evaluation for the uncontrolled gripper showed a rotation of $19.97^{\circ}$. Forced cooling techniques were employed to speed up the cooling process. The gripper is simple and robust in design (single movable jaw), easy to fabricate, low cost, and exhibits wide handling capabilities like longer object handling time and handling wide sizes of objects with minimum utilization of power since power is required only to grasp and release operations.

Modeling for the Natural Vibration Analysis of a Rotating Thick Ring (회전하는 두꺼운 링의 고유진동 해석을 위한 모델링)

  • Kim, Chang-Boo;Kim, Bo-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.107-114
    • /
    • 2007
  • In this paper, the equations of motion by which the natural vibration of rotating thick ring can be analyzed accurately are presented. These equations are derived from the theory of finite deformation and the principle of virtual work. The effects of variation in curvature across the ring cross-section can be considered in these equations. The ring models are called as thick ring model and thin ring model respectively as the effects of variation in curvature are considered or neglected. The radial displacement of ring which is rotating at constant angular velocity is determined by a non-linear equation derived from the principle of virtual work. The equations of the in-plane and out-of-plane vibrations at disturbed state are also formulated from the principle of virtual work. They can be expressed as the combination of the radial displacement at the steady state and the disturbed displacements about the steady state. The natural vibrations of rings with different thickness are analyzed by using the presented ring models and 3-dimensional finite element method to verify accuracy of the presented equations of motion. Its results are compared and discussed.

  • PDF