DOI QR코드

DOI QR Code

Numerical Study on Energy Absorption of a Floater for Design of Wave Energy Convertor in Ocean

해양 파력 발전 시스템 설계를 위한 부유체 에너지 흡수에 관한 기초연구

  • ;
  • ;
  • 최윤환 (부경대학교 BK21 스마트기계 사업팀) ;
  • 이연원 (부경대학교 기계자동차공학과)
  • Received : 2012.06.19
  • Accepted : 2012.07.20
  • Published : 2012.07.31

Abstract

In order to design a wave energy generating system, a 6-DOF analysis technique is applied to the three-Dimensional CFD analysis on of a floating body and the behavior is interpreted according to the nature of the incoming wave. A wave period of 5.5s & amplitude of 0.57m from Marado is chosen. 12 case of natural pitching period from 1.25 to 2.8s has been modeled. The relation between tuning factor & pitch angle for the waves generated is compared to analyze the effects of energy absorption variables, namely mass moment of inertia, angular velocity and angular acceleration. From the results obtained, we conclude that model L is the maximum power absorbed, 6kW approximately. A maximum pitch angle of 1.91 degree was attained by Model F, and the maximum displacement of nearly 0.7m was attained by Model L among models D, F and L.

해양 파력 발전 시스템의 설계를 위하여 본 연구에서는 6-자유도운동해석 기법을 적용한 3차원 CFD 해석으로 단일 부유체에 대한 거동을 유입되는 파의 성질에 따라 해석하였다. 입력파는 한반도 제주도 서남해역 마라도인근 연평균 주기 5.5s, 진폭 0.57m로 가정하여 부유체 고유진도주기가 1.25~2.8s에서 총 12개를 모델링하였다. 생성된 파를 이용하여 동조율과 피치각 변화의 상호관계를 분석하고 부유체 질량관성모멘트, 각속도, 각가속도 등 변수와 최대 에너지 흡수 관계를 비교 분석하였다. 해석결과 부유체 L의 에너지흡수가 가장 높은 6kW인 결과를 확인하였고 에너지 흡수가 가장 높은 D, F, L 모델중 F모델이 최대 각도변화가 가장 높은 $1.91^{\circ}$이며 부유체 끝부분에서의 최대 변위는 L모델이 가장 높은 약 0.7m이다.

Keywords

References

  1. R. Bound, Status and Research and Development Priorities, Wave and Marine Accessed Energy, UK Dept. of Trade and Industry(DTI), DTI Report # FES-R-132, AEAT Report # AEAT/ENV/1054, 2003.
  2. J. Falnes, "A review of wave-energy extraction", Marine Structures 20, pp 185-201, 2007. https://doi.org/10.1016/j.marstruc.2007.09.001
  3. A. Falcao, "Wave energy utilization: A review of the technologies" Renewable and Sustainable Energy Reviews, vol. 14, no. 3, pp. 899-918, 2010. https://doi.org/10.1016/j.rser.2009.11.003
  4. A.Al-Habaibeh, D. Su, J. McCague and A. Knight, "An innovative approach for energy generation from waves", Energy Conversion and Management, vol. 51, no. 8, pp. 1664-1668, 2010. https://doi.org/10.1016/j.enconman.2009.11.041
  5. G.J. Dalton, R.Alcorn and T.Lewis, "Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America", Renewable Energy, vol. 35 no. 2, pp. 443-455, 2010.
  6. Dr. Vedeler (Introductory Remarks), "Seagoing Qualities of Ships", Subject 6, Sixth International Conference of Ship Tank Superintendents, Washington, pp. 154-188, 1951.
  7. H. J. Ryu, K.Y. Hong, S.H. Shin, M. Song and D. Y. Kim, "Analysis of long-term wave distribution at Jeju Sea based on SWAN Model simulation", Journal of the Korean Society for Marine Environmental Engineering, vol. 7, no. 3, pp. 137-145, 2004.
  8. ANSYS CFX 13.0 Solver theory
  9. K. M. Li, N. Parthasarathy, Y. K. Park, H. Y. Jung, Y. H. Choi and Y. W. Lee, "Study on the motion of floater structure for design of wave energy generation in ocean", Journal of the Korean Society of Marine Engineering, vol. 35, no. 5, pp. 632-639, 2011. https://doi.org/10.5916/jkosme.2011.35.5.632
  10. J.N. Newman, Marine Hydrodynamics, MIT Press, England, 1978.

Cited by

  1. Study on Wave Energy Generation of Multi-Floating Bodies for Energy Absorption by CFD vol.17, pp.5, 2013, https://doi.org/10.9726/kspse.2013.17.5.038
  2. Numerical analysis of 2-DOF motions of an ocean floater with sloshing effects vol.37, pp.6, 2013, https://doi.org/10.5916/jkosme.2013.37.6.617